
Preface

This book is an introduction to logic for students of contemporary philosophy.

It covers (i) basic approaches to logic, including proof theory and especially

model theory, (ii) extensions of standard logic (such as modal logic) that are

important in philosophy, and (iii) some elementary philosophy of logic. It pre-

pares students to read the logically sophisticated articles in today’s philosophy

journals, and helps them resist bullying by symbol-mongers. In short, it teaches

the logic you need to know in order to be a contemporary philosopher.

For better or for worse (I think better), during the last century or so,

philosophy has become infused with logic. Logic informs nearly every area of

philosophy; it is part of our shared language and knowledge base. The standard

philosophy curriculum therefore includes a healthy dose of logic. This is a good

thing. But in many cases only a single advanced logic course is required; and

the material taught in that course becomes the only advanced logic that many

undergraduate philosophy majors and beginning graduate students ever learn.

And this one course is often an intensive survey of metalogic (for example, one

based on the excellent Boolos et al. (2007)). I do believe in the value of such a

course, especially for students who take multiple logic courses or specialize in

“technical” areas of philosophy. But for students taking only a single course, that

course should not, I think, be a course in metalogic. The standard metalogic

course is too mathematically demanding for the average philosophy student,

and omits material that the average student ought to know. If there can be only

one, let it be a crash course in logic literacy.

“Logic literacy” includes knowing what metalogic is all about. And you

can’t really learn about anything in logic without getting your hands dirty and

doing it. So this book does contain some metalogic (for instance, soundness

and completeness proofs in propositional logic and propositional modal logic).

But it doesn’t cover the central metalogical results one normally covers in a

mathematical logic course: soundness and completeness in predicate logic,

i

PREFACE ii

computability, Gödel’s incompleteness theorems, and so on.

I have decided to be very sloppy about use and mention. When such issues

matter I draw attention to them; but where they do not I do not.

A range of exercises are included. Some are routine calculation; others

require more creativity. The ones that involve metalogic fall into the second

category, are generally more dif�cult, and could be skipped in a more elementary

course. Solutions to exercises marked with a single asterisk (*) are included

in Appendix A. Exercises marked with a double asterisk (**) tend to be more

dif�cult, and have hints in Appendix A.

I drew heavily from the following sources, which would be good for sup-

plemental reading: Bencivenga (1986) (free logic); Boolos et al. (2007, chapter

18) (metalogic, second-order logic); Cresswell (1990) (two-dimensional modal

logic); Davies and Humberstone (1980) (two-dimensional modal logic); Gamut

(1991a,b) (descriptions, λ-abstraction, multi-valued, modal, and tense logic);

Hilpinen (2001) (deontic logic); Hughes and Cresswell (1996) (modal logic—I

borrowed particularly heavily here—and tense logic); Kripke (1965) (intuition-

istic logic); Lemmon (1965) (sequents in propositional logic); Lewis (1973a)

(counterfactuals); Mendelson (1987) (propositional and predicate logic, meta-

logic); Meyer (2001) (epistemic logic); Priest (2001) (intuitionistic and paracon-

sistent logic); Stalnaker (1977) (λ-abstraction); Westerståhl (1989) (generalized

quanti�ers).

Another important source, particularly for Chapters 6 and 8, was Ed Get-

tier’s 1988 modal logic class at the University of Massachusetts. The �rst

incarnation of this work grew out of my notes from this course. I am grateful

to Ed for his wonderful class, and for getting me interested in logic.

I am also deeply grateful for feedback from many students, colleagues, and

referees. In particular, Marcello Antosh, Josh Armstrong, Elizabeth Barnes,

Dean Chapman, Tony Dardis, Justin Clarke-Doane, Mihailis Diamantis, Mike

Fara, Gabe Greenberg, Angela Harper, John Hawthorne, Paul Hovda, Phil

Kremer, Sami Laine, Gregory Lavers, Brandon Look, Stephen McLeod, Kevin

Moore, Alex Morgan, Tore Fjetland 6Ogaard, Nick Riggle, Jeff Russell, Brock

Sides, Jason Turner, Crystal Tychonievich, Jennifer Wang, Brian Weatherson,

Evan Williams, Xing Taotao, Seth Yalcin, Zanja Yudell, Richard Zach, and

especially Agustín Rayo: thank you.

Chapter 1

What is Logic?

S
ince you are reading this book, you probably know some logic already.

You probably know how to translate English sentences into symbolic

notation, into propositional logic:

English Propositional logic
Either violets are blue or I need glasses V∨N
If snow is white then grass is not green S→∼G

and into predicate logic:

English Predicate logic
If Grant is male then someone is male M g→∃xM x
Any friend of Barry is either insane or

friends with everyone

∀x[F x b→(I x ∨∀yF xy)]

You are probably also familiar with some techniques for evaluating arguments

written out in symbolic notation. You have probably encountered truth tables,

and some form of proof theory (perhaps a “natural deduction” system; perhaps

“truth trees”.) You may have even encountered some elementary model theory.

In short: you have taken an introductory course in symbolic logic.

What you already possess is: literacy in elementary logic. What you will

get out of this book is: literacy in the rest of logic that philosophers tend to

presuppose, plus a deeper grasp of what logic is all about.

So what is logic all about?

1

CHAPTER 1. WHAT IS LOGIC? 2

1.1 Logical consequence and logical truth
Logic is about many things, but most centrally it is about logical consequence. The

statement “someone is male” is a logical consequence of the statement “Grant is

male”. If Grant is male, then it logically follows that someone is male. Put another

way: the statement “Grant is male” logically implies the statement “someone

is male”. Likewise, the statement “Grant is male” is a logical consequence of

the statements “It’s not the case that Leisel is male” and “Either Leisel is male

or Grant is male” (taken together). The �rst statement follows from the latter

two statements; they logically imply it. Put another way: the argument whose

premises are the latter two statements, and whose conclusion is the former

statement, is a logically correct one.
1

So far we’ve just given synonyms. The following slogan advances us a bit

further: logical consequence is truth-preservation by virtue of form. To unpack a

bit: for φ to be a logical consequence of ψ, it is not enough that we all know

that φ is true if ψ is. We all know that an apple will fall if it is dropped, but

the relationship between falling and dropping does not hold by virtue of logic.

Why not? For one thing, “by virtue of logic” requires the presence of some sort

of necessary connection, a connection that is absent in the case of the dropped

apple (since it would be possible—in some sense—for a dropped apple not to

fall). For another, it requires the relationship to hold by virtue of the forms

of the statements involved, whereas the relationship between “the apple was

dropped” and “the apple fell” holds by virtue of the contents of these statements

and not their form. (By contrast, the inference from ‘It’s not the case that Leisel

is male” and “Either Leisel is male or Grant is male” to “Grant is male” is said

to hold in virtue of form, since any argument of the form “it’s not the case that

φ; either φ or ψ; therefore ψ” is logically correct.) As we’ll see shortly, there

are many open philosophical questions in this vicinity, but perhaps we have

enough of an intuitive �x on the concept of logical consequence to go on with,

at least for the moment.

A related concept is that of a logical truth. Just as logical consequence is

truth-preservation by virtue of form, logical truth is truth by virtue of form.

Examples might include: “it’s not the case that snow is white and also not

white”, “All �sh are �sh”, and “If Grant is male then someone is male”. As with

logical consequence, logical truth is thought to require some sort of necessity

1
The word ‘valid’ is sometimes used for logically correct arguments, but I will reserve that

word for a different concept: that of a logical truth, under the semantic conception.

CHAPTER 1. WHAT IS LOGIC? 3

and to hold by virtue of form, not content. It is plausible that logical truth

and logical consequence are related thus: a logical truth is a sentence that is a

logical consequence of the empty set of premises. One can infer a logical truth

by using logic alone, without the help of any premises.

A central goal of logic, then, is to study logical truth and logical consequence.

But the contemporary method for doing so is somewhat indirect. As we will

see in the next section, instead of formulating claims about logical consequence

and logical truth themselves, modern logicians develop formal models of how

those concepts behave.

1.2 Formalization
Modern logic is called “mathematical” or “symbolic” logic, because its method

is the mathematical study of formal languages. Modern logicians use the tools

of mathematics (especially, the tools of very abstract mathematics, such as set

theory) to treat sentences and other parts of language as mathematical objects.

They de�ne up formal languages, de�ne up sentences of the languages, de�ne

up properties of the sentences, and study those properties. Mathematical logic

was originally developed to study mathematical reasoning, but its techniques

are now applied to reasoning of all kinds.

Take propositional logic, the topic of chapter 2. Here our goal is to shed

light on the logical behavior of ‘and’, ‘or’, and so on. But rather than studying

those words directly, we will develop a certain formal language, the language

of propositional logic. The sentences of this language look like this:

P
(Q→R)∨ (Q→∼S)

P ↔ (P∧Q)

Symbols like ∧ and ∨ represent natural language logical words like ‘and’ and

‘or’; and the sentence letters P,Q, . . . represent declarative natural language

sentences. We will then go on to de�ne (as always, in a mathematically rigorous

way) various concepts that apply to the sentences in this formal language. We

will de�ne the notion of a tautology (“all Trues in the truth table”), for example,

and the notion of a provable formula (we will do this using a system of deduction

with rules of inference; but one could use truth trees, or some other method).

These de�ned concepts are “formalized versions” of the concepts of logical

consequence and logical truth.

CHAPTER 1. WHAT IS LOGIC? 4

Formalized logical consequence and logical truth should be distinguished

from the real things. The formal sentence P→P is a tautology, but since it is

uninterpreted, we probably shouldn’t call it a logical truth. Rather, it represents
logical truths like “If snow is white then snow is white”. A logical truth ought

at least to be true, after all, and P→P isn’t true, since it doesn’t even have

a meaning—what’s the meaning of P? (Caveat: one might give meanings to

formal sentences—by translation into natural language (“let P mean that snow

is white; let ∧ mean and…”), or perhaps by some direct method if no natural

language translation is available. And we may indeed speak of logical truth and

logical consequence for interpreted formal sentences.)

Why are formal languages called “formal”? (They’re also sometimes called

“arti�cial” languages.) Because their properties are mathematically stipulated,

rather than being pre-existent in �esh-and-blood linguistic populations. We

stipulatively de�ne a formal language’s grammar. (Natural languages like En-

glish also have grammars, which can be studied using mathematical techniques.

But these grammars are much more complicated, and are discovered rather than

stipulated.) And we must stipulatively de�ne any properties of the symbolic

sentences that we want to study, for example, the property of being a tautology.

(Sentences of natural languages already have meanings, truth values, and so

on; we don’t get to stipulate these.) Further, formal languages often contain

abstractions, like the sentence letters P,Q, . . . of propositional logic. A given

formal language is designed to represent the logical behavior of a select few

natural language words; when we use it we abstract away from all other features

of natural language sentences. Propositional logic, for example, represents the

logical behavior of ‘and’, ‘or’, and a few other words. When a sentence contains

none of these words of interest, we represent it with one of the sentence letters

P,Q, . . . , indicating that we are ignoring its internal structure.

1.3 Metalogic
There are many reasons to formalize—to clarify meaning, to speak more

concisely, and so on. But one of the most powerful reasons is to do metalogic.
In introductory logic one learns to use certain logical systems—how to

construct truth tables, derivations and truth trees, and the rest. But logicians

do not develop systems only to sit around all day using them. As soon as a

logician develops a new system, she begins to ask questions about that system.

For an analogy, imagine people who make up new games for a living. If they

CHAPTER 1. WHAT IS LOGIC? 5

invent a new version of chess, they might spend some time actually playing

it. But if they are like logicians, they will quickly tire of this and start asking

questions about the game. “Is the average length of this new game longer than

the average length of a game of standard chess?”. “Is there any strategy that

guarantees victory?” Analogously, logicians ask questions about logical systems.

“What formulas can be proven in such and such a system?” “Can you prove

the same things in this system as in system X?” “Can a computer program be

written to determine whether a given formula is provable in this system?” The

study of such questions about formal systems is called “metalogic”.

The best way to de�nitively answer metalogical questions is to use the

methods of mathematics. And to use the methods of mathematics, we need

to have rigorous de�nitions of the crucial terms that are in play. For example,

in chapter 2 we will mathematically demonstrate that “every formula that is

provable (in a certain formal system) is a tautology”. But doing so requires

carefully de�ning the crucial terms: ‘formula’, ‘provable’, and ‘tautology’; and

the best way to do this is to formalize. We treat the languages of logic as

mathematical objects so that we can mathematically demonstrate facts about

them.

Metalogic is a fascinating and complex subject; and other things being

equal, it’s good to know as much about it as you can. Now, other things are

rarely equal; and the premise of this book is that if push sadly comes to shove,

limited classroom time should be devoted to achieving logic literacy rather

than a full study of metalogic in all its glory. But still, logic literacy does require

understanding metalogic: understanding what it is, what it accomplishes, and

how one goes about doing it. So we will be doing a decent amount of metalogic

in this book. But not too much, and not the harder bits.

Much of metalogic consists of proving things about formal systems. And

sometimes, those formal systems themselves concern proof. For example, as I

said a moment ago, we will prove in chapter 2 that every provable formula is a

tautology. If this seems dizzying, keep in mind that ‘proof’ here is being used

in two different senses. There are metalogic proofs, and there are proofs in formal
systems. Metalogic proofs are phrased in natural language (perhaps augmented

with mathematical vocabulary), and employ informal (though rigorous!) rea-

soning of the sort one would encounter in a mathematics book. The chapter 2

argument that “every provable formula is a tautology” will be a metalogic proof.

Proofs in formal systems, on the other hand, are phrased using sentences of

formal languages, and proceed according to prescribed formal rules. ‘Provable’

in the statement ‘every provable formula is a tautology’ signi�es proof in a

CHAPTER 1. WHAT IS LOGIC? 6

certain formal system (one that we will introduce in chapter 2), not metalogic

proof.

Logicians often distinguish the “object language” from the “metalanguage”.

The object language is the language that’s being studied. One example is the

language of propositional logic. Its sentences look like this:

P∧Q
∼(P∨Q)↔R

The metalanguage is the language we use to talk about the object language.

In the case of the present book, the metalanguage is English. Here are some

example sentences of the metalanguage:

‘P∧Q’ is a formal sentence with three symbols

Every sentence of propositional logic has the same num-

ber of left parentheses as right parentheses

Every provable formula is a tautology

Thus, we formulate metalogical claims about an object language in the meta-

language, and prove such claims by reasoning in the metalanguage.

Using the metalanguage to make statements about words can sometimes

be tricky to do properly. In an effort to make a statement about the name of

the United States’s most excellent city, suppose I say:

(1) Philadelphia is made up of twelve letters

Sentence (1) does not at all capture my intention. It says that a certain city is

made up of twelve letters. But cities aren’t made up of letters; they’re made up

of things like buildings, streets, and people. The problem with sentence (1) is

that its subject is the word ‘Philadelphia’. The word ‘Philadelphia’ refers to

the city, Philadelphia; thus, sentence (1) says something about that city. But I

intended to say something about the word that names that city, not about the

city itself. What I should have said is this:

(2) ‘Philadelphia’ is made up of twelve letters

The subject of sentence (2) is the following expression:

CHAPTER 1. WHAT IS LOGIC? 15

Variations also change standard logic, but here the changes are, roughly

speaking, merely notational; they leave the content of standard logic unal-

tered. For example, in Polish notation, instead of writing P→(Q∧R), we write

→P∧QR; binary connectives go in front of the sentences they connect rather

than between them.

1.8 Set theory
I said earlier that modern logic uses “mathematical techniques” to study formal

languages. The mathematical techniques in question are those of set theory.

Only the most elementary set-theoretic concepts and assumptions will be

needed, and you may already be familiar with them; but nevertheless, here is a

brief overview.

Sets have members. Consider the set, A, of even integers between 2 and 6. 2
is a member of A, 4 is a member of A, 6 is a member of A; and nothing else is a

member of A. We use the expression “∈” for membership; thus, we can say:

2 ∈A, 4 ∈A, and 6 ∈A. We often name a set by putting names of its members

between braces: “{2,4,6}” is another name of A.

We can also speak of sets with in�nitely many members. Consider N, the set

of natural numbers. Each natural number is a member of N; thus, 0 ∈N, 1 ∈N,

and so on. We can informally name this set with the brace notation as well:

“{0,1,2,3, . . .}”, so long as it is clear which continued series the ellipsis signi�es.

The members of a set need not be mathematical entities; anything can be a

member of a set.
8

Sets can contain people, or cities, or—to draw nearer to our

intended purpose—sentences and other linguistic entities.

There is also the empty set, ∅. This is the one set with no members. That

is, for each object u, u is not a member of ∅ (i.e.: for each u, u /∈∅.)

Though the notion of a set is an intuitive one, the Russell Paradox (discov-

ered by Bertrand Russell) shows that it must be employed with care. Let R be

the set of all and only those sets that are not members of themselves. That is,

R is the set of non-self-members. Russell asks the following question: is R a

member of itself? There are two possibilities:

· R /∈ R. Thus, R is a non-self-member. But R was said to be the set of all

non-self-members, and so we’d have R ∈ R. Contradiction.

8
Well, some axiomatic set theories bar certain “very large collections” from being members

of sets. This issue won’t be relevant here.

CHAPTER 1. WHAT IS LOGIC? 16

· R ∈ R. So R is not a non-self-member. R, by de�nition, contains only
non-self-members. So R /∈ R. Contradiction.

Thus, each possibility leads to a contradiction. But there are no remaining

possibilities—either R is a member of itself or it isn’t! So it looks like the very

idea of sets is paradoxical.

Since Russell’s time, set theorists have developed theories of sets that avoid

Russell’s paradox (as well as other related paradoxes). They do this chie�y by

imposing rigid restrictions on when sets exist. So far we have been blithely

assuming that there exist various sets: the set N, sets containing people, cities,

and sentences, Russell’s set R. That got us into trouble. So what we want is

a theory of when sets exist that blocks the Russell paradox by saying that set

R simply doesn’t exist (for then Russell’s argument falls apart), but which says

that the sets we need to do mathematics and metalogic do exist. The details of

set theory are beyond the scope of this book. Here, we will help ourselves to

intuitively “safe” sets, sets that aren’t anything like the Russell set. We’ll leave

the task of what “safe” amounts to, exactly, to the set theorists.

Various other useful set-theoretic notions can be de�ned in terms of the

notion of membership. Set A is a subset of set B (“A⊆ B”) when every member

of A is a member of B . The intersection of A and B (“A∩ B”) is the set that

contains all and only those things that are members of both A and B ; the union
of A and B (“A∪ B”) is the set containing all and only those things that are

members of either A or B (or both
9
).

Suppose we want to refer to the set of the so-and-sos—that is, the set

containing all and only objects, u, that satisfy the condition “so-and-so”. We’ll

do this with the term “{u: u is a so-and-so}”. Thus, we could write: “N= {u :
u is a natural number}”. And we could restate the de�nitions of ∩ and ∪ from

the previous paragraph as follows:

A∩B = {u : u ∈A and u ∈ B}
A∪B = {u : u ∈A or u ∈ B}

Sets have members, but they don’t contain them in any particular order.

For example, the set containing me and Barack Obama doesn’t have a “�rst”

member. “{Ted, Obama}” and “{Obama, Ted}” are two different names for

the same set—the set containing just Obama and me. (This follows from

9
In this book I always use ‘or’ in its inclusive sense.

CHAPTER 1. WHAT IS LOGIC? 17

the “criterion of identity” for sets: sets are identical if and only if they have

exactly the same members.) But sometimes we need to talk about set-like things

containing objects in a particular order. For this purpose we use ordered sets.10

Two-membered ordered sets are called ordered pairs. To name the ordered

pair of Obama and Ted, we use: “〈Obama, Ted〉”. Here, the order is signi�cant;

〈Obama, Ted〉 and 〈Ted, Obama〉 are not the same ordered pair. The three-

membered ordered set of u, v, and w (in that order) is written: 〈u, v, w〉; and

similarly for ordered sets of any �nite size. A n-membered ordered set is called

an n-tuple. (For the sake of convenience, let’s de�ne the 1-tuple 〈u〉 to be just

the object u itself.)

A further concept we’ll need is that of a relation. A relation is just a feature

of multiple objects taken together. The taller-than relation is one example:

when one person is taller than another, that’s a feature of those two objects

taken together. Another example is the less-than relation for numbers. When

one number is less than another, that’s a feature of those two numbers taken

together.

“Binary” relations apply to two objects at a time. The taller-than and less-

than relations are binary relations, or “two-place” relations as we might say.

We can also speak of three-place relations, four-place relations, and so on. An

example of a three-place relation would be the betweenness relation for numbers:

the relation that holds among 2, 5, and 23 (in that order), for example.

We can use ordered sets to give an of�cial de�nition of what a relation is.

Definition of relation: An n-place relation is a set of n-tuples.

So a binary (two-place) relation is a set of ordered pairs. For example, the

taller-than relation may be taken to be the set of ordered pairs 〈u, v〉 such that

u is a taller person than v . The less-than relation for positive integers is the set

of ordered pairs 〈m, n〉 such that m is a positive integer less than n, another

positive integer. That is, it is the following set:

{〈1,2〉, 〈1,3〉, 〈1,4〉 . . . 〈2,3〉, 〈2,4〉 . . .}
10

There’s a trick for de�ning ordered sets in terms of sets. First, de�ne the ordered pair

〈u, v〉 as the set {{u},{u, v}}. (We can recover the information that u is intended to be the �rst
member because u “appears twice”.) Then de�ne the n-tuple 〈u1 . . . un〉 as the ordered pair

〈u1, 〈u2 . . . un〉〉, for each n ≥ 3. But henceforth I’ll ignore this trick and just speak of ordered

sets without worrying about how they’re de�ned.

CHAPTER 1. WHAT IS LOGIC? 18

When 〈u, v〉 is a member of relation R, we say, equivalently, that u and v “stand

in” R, or R “holds between” u and v, or that u “bears” R to v. Most simply,

we write “Ruv”.
11

Some more de�nitions:

Definition of domain, range, over: Let R be any binary relation and A be

any set.

· The domain of R (“dom(R)”) is the set {u: for some v, Ruv}
· The range of R (“ran(R)”) is the set {u: for some v, Rv u}
· R is over A iff dom(R)⊆A and ran(R)⊆A

In other words, the domain of R is the set of all things that bear R to something;

the range is the set of all things that something bears R to; and R is over A iff

the members of the ’tuples in R are all drawn from A.

Binary relations come in different kinds, depending on the patterns in which

they hold:

Definition of kinds of binary relations: Let R be any binary relation over

some set A.

· R is serial (in A) iff for every u ∈A, there is some v ∈A such that Ruv.

· R is re�exive (in A) iff for every u ∈A, Ru u

· R is symmetric iff for all u, v, if Ruv then Rv u

· R is transitive iff for any u, v, w, if Ruv and Rvw then Ruw

· R is an equivalence relation (in A) iff R is symmetric, transitive, and

re�exive (in A)

· R is total (in A) iff for every u, v ∈A, Ruv

Notice that we relativize some of these relation types to a given set A. We do

this in the case of re�exivity, for example, because the alternative would be

to say that a relation is re�exive simpliciter if everything bears R to itself; but

that would require the domain and range of any re�exive relation to be the set

of absolutely all objects. It’s better to introduce the notion of being re�exive

relative to a set, which is applicable to relations with smaller domains. (I will

11
This notation is like that of predicate logic; but here I’m speaking the metalanguage, not

displaying sentences of a formalized language.

CHAPTER 1. WHAT IS LOGIC? 19

sometimes omit the quali�er ‘in A’ when it is clear which set that is.) Why

don’t symmetry and transitivity have to be relativized to a set?—because they

only say what must happen if R holds among certain things. Symmetry, for

example, says merely that if R holds between u and v, then it must also hold

between v and u, and so we can say that a relation is symmetric absolutely,

without implying that everything is in its domain.

We’ll also need the concept of a function. A function “takes in” an object or

objects (in a certain order), and “spits out” a further object. For example, the

addition function takes in two numbers, and spits out their sum. As with sets,

ordered sets, and relations, functions are not limited to mathematical entities:

they can take in and spit out any objects whatsoever. We can speak of the

father-of function, for example, which takes in a person, and spits out the father

of that person. (The more common way of putting this is: the function “maps”

the person to his or her father.) And later in this book we will be considering

functions that take in and spit out linguistic entities.

Some functions must take in more than one object before they are ready to

spit out something. For example, you need to give the addition function two

numbers in order to get it to spit out something; for this reason it is called a

two-place function. The father-of function, on the other hand, needs to be given

only one object, so it is a one-place function. Let’s simplify this by thinking

of an n-place function as simply being a one-place function that takes in only

n-tuples. Thus, if you give the addition function the ordered pair 〈2,5〉, it spits

out 7.

The objects that a function takes in are called its arguments, and the objects

it spits out are called its values. If u is an argument of f we write “ f (u)” for

the value of function f as applied to the argument u. f (u) is the object that

f spits out, if you feed it u. For example, where f is the father-of function,

since Ron is my father we can write: f (Ted) = Ron. When f is an n-place

function—i.e., its arguments are n-tuples—instead of writing f (〈u1, . . . , un〉)
we write simply f (u1, . . . , un). So where a is the addition function, we can write:

a(2,3) = 5. The domain of a function is the set of its arguments, and its range is

the set of its values. If u is not in function f ’s domain (i.e., u is not one of f ’s

arguments), then f is unde�ned for u. The father-of function, for example, is

unde�ned for numbers (since numbers have no fathers). These concepts may

be pictured for (a part of) the father-of function thus:

CHAPTER 1. WHAT IS LOGIC? 20

Jenna Bush

George W. BushBarbara Bush

George W. Bush George H. W. Bush

Chelsea Clinton Bill Clinton

17 Chelsea Clinton

Massachusetts Cygnus X-1

range

domain

The number 17 and the state of Massachusetts are excluded from the domain

because, being a number and a political entity, they don’t have fathers. Chelsea

Clinton and Cygnus X-1 are excluded from the range because, being a woman

and a black hole, they aren’t fathers of anyone. 17 and Massachusetts aren’t in

the range either; and Cygnus X-1 isn’t in the domain. But Chelsea Clinton is

in the domain, since she has a father.

It’s part of the de�nition of a function that a function can never map an

argument to two distinct values. That is, f (u) cannot be equal both to v and

also to v ′ when v and v ′ are two different objects. That is, a function always

has a unique value, given any argument for which the function is de�ned. (So

there is no such function as the parent-of function; people typically have more

than one parent.) Functions are allowed to map two distinct arguments to the

same value. (The father-of function is an example; two people can have the

same father.) But if a given function happens never to do this, then it is called

one-to-one. That is, a (one-place) function f is one-to-one iff for any u and v
in its domain, if u 6= v then f (u) 6= f (v). (The function of natural numbers f
de�ned by the equation f (n) = n+ 1 is an example.) This all may be pictured

as follows:

Not a function

• // •

• //

��@
@@

@@
@ •

•

One-to-one function

• // •

• // •

• // •

Function that’s not one-to-one

• // •

•

��@
@@

@@
@

• // •

As with the notion of a relation, we can use ordered sets to give of�cial

de�nitions of function and related notions:

CHAPTER 1. WHAT IS LOGIC? 21

Definition of function-theoretic notions:

· A function is a set of ordered pairs, f , obeying the condition that if 〈u, v〉
and 〈u, w〉 are both members of f , then v = w

· When 〈u, v〉 ∈ f , we say that u is an argument of f , v is a value of f , and

that f maps u to v; and we write: “ f (u) = v”

· The domain of a function is the set of its arguments; its range is the set

of its values

· A function is n-place when every member of its domain is an n-tuple

Thus, a function is just a certain kind of binary relation—one that never relates

a single thing u to two distinct objects v and w. (Notice that the de�nition

of “domain” and “range” for functions yields the same results as the de�nition

given earlier for relations.)

The topic of in�nity is perhaps set theory’s most fascinating part. And one

of the most fascinating things about in�nity is the matter of sizes of in�nity.

Compare the set N of natural numbers and the set E of even natural numbers

({0,2,4,6, . . .}). Which set is bigger—which has more members? You might

think that N has got to be bigger, since it contains all the members of E and

then the odd natural numbers in addition. But in fact these sets have the same

size. For we can line up their members as follows:

N : 0 1 2 3 4 5 . . .
E : 0 2 4 6 8 10 . . .

If two sets can be “lined up” in this way, then they have the same size. Indeed,

this is how set theorists de�ne ‘same size’. Or rather, they give a precise

de�nition of sameness of size (they call it “equinumerosity”, or sameness of

“cardinality”) which captures this intuitive idea:

Definition of Equinumerosity: Sets A and B are equinumerous iff there

exists some one-to-one function whose domain is A and whose range is B

Intuitively: sets are equinumerous when each member of either set can be

associated with a unique member of the other set. You can line their members

up.

The picture in which the members of N and the members of E were lined

up is actually a picture of a function: the function that maps each member of N

CHAPTER 1. WHAT IS LOGIC? 22

to the member of E immediately below it in the picture. Mathematically, this

function, f , may be de�ned thus:

f (n) = 2n (for any n ∈N)

This function is one-to-one (since if two natural numbers are distinct then

doubling each results in two distinct numbers). So N and E are equinumerous.

It’s quite surprising that a set can be equinumerous with a mere subset of itself.

But that’s how it goes with in�nity.

Even more surprising is the fact that the rational numbers are equinumerous

with the natural numbers. A (nonnegative) rational number is a number that

can be written as a fraction
n
m where n and m are natural numbers and m 6= 0.

To show that N is equinumerous with the set Q of rational numbers, we must

�nd a one-to-one function whose domain is N and whose range is Q. At �rst this

seems impossible, since the rationals are “dense” (between every two fractions

there is another fraction) whereas the naturals are not. But we must simply be

clever in our search for an appropriate one-to-one function.

Each rational number is represented in the following grid:

numerators

denominators

1 2 3 4 5 . . .

0 0
1

0
2

0
3

0
4

0
5 . . .

1 1
1

1
2

1
3

1
4

1
5 . . .

2 2
1

2
2

�
�

�
�2

3
2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Any rational number
n
m can be found in the row for n and the column for

m. For example,
2
3 (circled above) is in the row for 2 (the third row, since

the �rst row is for 0) and the column for 3 (the third column). In fact, every

rational number appears multiple times in the grid (in�nitely many times, in

fact). For example, the rational number
1
2 , which occurs in the second row,

CHAPTER 1. WHAT IS LOGIC? 23

second column, is the same as the rational number
2
4 , which occurs in the third

row, fourth column. (It’s also the same as
3
6 , 4

8 , 5
10)

Our goal is to �nd a way to line up the naturals with the rationals—to �nd

a one-to-one function, f , with domain N and range Q. Since each rational

number appears in the grid, all we need to do is go through all of the (in�nitely

many!) points on the grid, one by one, and count off a corresponding natural

number for each; we’ll then let our function f map the natural numbers we

count off to the rational numbers that appear at the corresponding points on

the grid. Let’s start at the top left of the grid, and count off the �rst natural

number, 0. So we’ll have f map 0 to the rational number at the top left of the

grid, namely,
0
1 . That is, f (0) = 0

1 . We can depict this by labeling
0
1 with the

natural number we counted off, 0:

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2

0
3

0
4

0
5 . . .

1 1
1

1
2

1
3

1
4

1
5 . . .

2 2
1

2
2

2
3

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Next, ignoring a certain wrinkle which I’ll get to in a moment, let’s count off

natural numbers for the rationals in the uppermost “ring” around the top left

of the grid, in counterclockwise order, beginning at the left:

CHAPTER 1. WHAT IS LOGIC? 24

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2(3)

0
3

0
4

0
5 . . .

1 1
1(1)

1
2 (2)

1
3

1
4

1
5 . . .

2 2
1

2
2

2
3

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Then (continuing to ignore the wrinkle) let’s count off the next ring of numbers,

again in counterclockwise order beginning at the left:

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0)

0
2(3)

0
3(8)

0
4

0
5 . . .

1 1
1(1)

1
2 (2)

1
3 (7)

1
4

1
5 . . .

2 2
1(4)

2
2(5)

2
3(6)

2
4

2
5 . . .

3 3
1

3
2

3
3

3
4

3
5 . . .

4 4
1

4
2

4
3

4
4

4
5 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

And so on in�nitely. For each new ring, we begin at the left, and move through

the ring counterclockwise, continuing to count off natural numbers.

Every point on the grid will eventually be reached by one of these increas-

ingly large (but always �nite) rings. Since every rational number appears on

the grid, every rational number eventually gets labeled with a natural number.

So the range of our function f is the entirety of Q! There are two tricks that

make this work. First, even though the rational numbers are dense, they can

CHAPTER 1. WHAT IS LOGIC? 25

be laid out in a discrete grid. Second, even though the grid is two dimensional

and the natural numbers are only one-dimensional, there is a way to cover the

whole grid with naturals since there is a “one-dimensional” path that covers

the entire grid: the path along the expanding rings.

The wrinkle is that this procedure, as we’ve laid it out so far, doesn’t deliver

a one-to-one function, because rational numbers appear multiple times in the

grid. For example, given our de�nition, f maps 0 to
0
1 and 3 to

0
2 . But

0
2 is the

same rational number as
0
1—namely, 0—so f isn’t one-to-one. (f also maps 8

to 0; and it maps both 1 and 5 to 1, etc.) But it’s easy to modify the procedure

to �x this problem. In our trek through the rings, whenever we hit a rational

number that we’ve already encountered, let’s now simply skip it, and go on to

the next rational number on the trek. Thus, the new diagram looks as follows

(the skipped rational numbers are struck out):

numerators

denominators

1 2 3 4 5 . . .

0 0
1(0) �

�0
2 �

�0
3 �

�0
4 �

�0
5 . . .

1 1
1(1)

1
2 (2)

1
3 (5)

1
4(9)

1
5 (15) . . .

2 2
1(3) �

�2
2

2
3(4) �

�2
4

2
5(14) . . .

3 3
1(6)

3
2(7) �

�3
3

3
4(8)

3
5(13) . . .

4 4
1(10)

�
�4
2

4
3 (11)

�
�4
4

4
5 (12) . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

We’ve now got our desired function f : it is the function that maps each natural

number to the rational number in the grid labelled by that natural number.

(Notice, incidentally, that f could be displayed in this way instead:

n : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
f (n) : 0 1 1

2 2 2
3

1
3 3 3

2
3
4

1
4 4 4

3
4
5

3
5

2
5

1
5 . . .

This is just a different picture of the same function.) Since each rational number

is labeled by some natural number, f ’s range is Q. f ’s domain is clearly N. And

f is clearly one-to-one (since our procedure skips previously encountered

rational numbers). So f is our desired function; N and Q are the same size.

CHAPTER 1. WHAT IS LOGIC? 26

If even a dense set like Q is no bigger than N, are all in�nite sets the same

size? The answer is in fact no. Some in�nite sets are bigger than N; there are

different sizes of in�nity.

One such set is the set of real numbers. Real numbers are numbers that can

be represented by decimals. All rational numbers are real numbers; and their

decimal representations either terminate or eventually repeat in some in�nitely

recurring pattern. (For example,
1
3 has the repeating decimal representation

0.3333 . . . ; 7
4 has the terminating decimal representation 1.75.) But some real

numbers are not rational numbers. These are the real numbers with decimal

representations that never repeat. One example is the real number π, whose

decimal representation begins: 3.14159
We’ll prove that there are more real than natural numbers by proving that

there are more real numbers between 0 and 1 than there are natural numbers.

Let R be the set of real numbers in this interval. Now, consider the function

f which maps each natural number n to
1

n+2 . This is a one-to-one function

whose domain is N and whose range is { 1
2 , 1

3 , 1
4 , . . .}. But this latter set is a subset

of R. So R is at least as big as N. So all we need to do is show that R is not the

same size as N. And we can do this by showing that the assumption that N and

R are the same size would lead to a contradiction.

So, suppose that N and R are equinumerous. Given the de�nition of equinu-

merosity, there must exist some one-to-one function, f , whose domain is N
and whose range is R. We can represent f on a grid as follows:

f (0) = 0 . a0,0 a0,1 a0,2 . . .
f (1) = 0 . a1,0 a1,1 a1,2 . . .
f (2) = 0 . a2,0 a2,1 a2,2 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

The grid represents the real numbers in the range of f by their decimal repre-

sentations.
12

The a’s are the digits in these decimal representations. For any

natural number i , f (i) is represented as the decimal 0.ai ,0ai ,1ai ,2 Thus ai , j

is the (j + 1)st digit in the decimal representation of f (i). Consider f (2), for

example. If f (2) happens to be the real number 0.2562894 . . . , then a2,0 = 2,

a2,1 = 5, a2,2 = 6, a2,3 = 2, and so on.

12
If a decimal representation terminates, we can think of it as nevertheless being in�nite:

there are in�nitely many zeros after the termination point.

CHAPTER 1. WHAT IS LOGIC? 27

The right hand part of the grid (everything except the column beginning

with “ f (0) =”) is a list of real numbers. The �rst real number on this list is

0.a0,0a1,1a0,2 . . . , the second is 0.a1,0a1,1a1,2 . . . , the third is 0.a2,0a2,1a2,2 . . . , and so

on. The real numbers in this list, in fact, comprise the range of f . But we

have supposed, remember, that the range of f is the entirety of R. Thus, we

have an important consequence of our supposition: this list is a complete list of

R. That is, every member of R occurs somewhere on the list, as the decimal

0.ai ,0ai ,1ai ,2 . . . , for some natural number i .

But in fact, we can show that this can’t be a complete list of R, by showing

that there is at least one real number between 0 and 1 that does not appear on

the list. We’re going to do this in a crafty way: we’ll look at the grid above,

and construct our real number as a function of the grid in such a way that it’s

guaranteed not to be anywhere on the list.

I’ll call the real number I’m after “d”; to specify d , I’m going to specify its

decimal representation 0.d0d1d2 Here is my de�nition of the j th
digit in

this decimal representation:

d j =

(

6 if a j , j = 5

5 otherwise

The “a j , j ”s refer to the grid depicting f above; thus, what real number d we

have de�ned depends on the nature of the grid, and thus on the nature of the

function f .

To get a handle on what’s going on here, think about it geometrically.

Consider the digits on the following diagonal line in the grid:

f (0) = 0 .
�� ��a0,0 a0,1 a0,2 . . .

f (1) = 0 . a1,0

�� ��a1,1 a1,2 . . .

f (2) = 0 . a2,0 a2,1

�� ��a2,2 . . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

To these diagonal digits, there corresponds a real number: 0.a0,0a1,1a2,2 Call

this real number a. What we did to arrive at our number d (so-called because we

are giving a “diagonal argument”) was to begin with a’s decimal representation

and change each of its digits. We changed each of its digits to 5, except when

the digit was already 5, in which case we changed it to 6.

We now approach the punch line. d ’s de�nition insures that it cannot

be anywhere on the list. Let f (i) be any member of the list. We can prove

CHAPTER 1. WHAT IS LOGIC? 28

that d and f (i) are not the same number. If they were, then their decimal

representations 0.d0d1d2 . . . and 0.ai ,0ai ,1ai ,2 . . . would also be the same. So each

digit d j in d ’s decimal representation would equal its corresponding digit ai , j in

f (i)’s decimal representation. But this can’t be. There is one place in particular

where the digits must differ: the i th
place. di is de�ned to be 6 if ai ,i is 5, and

de�ned to be 5 if ai ,i is not 5. Thus, di is not the same digit as ai ,i . So d ’s decimal

representation differs in at least one place from f (i)’s decimal representation;

so d is different from f (i). But f (i) was an arbitrarily chosen member of the

list. Thus we have our conclusion: d isn’t anywhere on the list. But d is a real

number between 0 and 1. So if our initial assumption that the range of f is all

of R were correct, d would have to be on the list. So that initial assumption

was false, and we’ve completed our argument: it’s impossible for there to be

a one-to-one function whose domain is N and whose range is all of R. Even

though N and R are both in�nite sets, R is a bigger in�nite set.

To grasp the argument’s �nal phase, think again in geometric terms. If

d were on the list, its decimal representation would intersect the diagonal.

Suppose, for instance, that d were f (3):

f (0) = 0 .
�� ��a0,0 a0,1 a0,2 a0,3 a0,4 . . .

f (1) = 0 . a1,0

�� ��a1,1 a1,2 a1,3 a1,4 . . .

f (2) = 0 . a2,0 a2,1

�� ��a2,2 a2,3 a2,4 . . .

d = f (3) = 0 . a3,0 a3,1 a3,2 a3,3 a3,4 . . .

f (4) = 0 . a4,0 a4,1 a4,2 a4,3

�� ��a4,4 . . .
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

Then, given d ’s de�nition, its decimal representation would be guaranteed to

differ from the diagonal series in its fourth digit, the point of intersection.

It’s natural to voice the following misgiving about the argument: “if d was

left off the list, then why can’t you just add it in? You could add it in at the

beginning, bumping all the remaining members of the list down one slot to

make room for it”:

CHAPTER 1. WHAT IS LOGIC? 29

initial list make room for d new list

f (0)
��

d

f (1) f (0)
��

f (0)

f (2) f (1)

��

f (1)

.

.

.
f (2)

��

f (2)

.

.

.

.

.

.

.

.

.

Natural as it is, the misgiving is misguided. It’s true that, given any list, one

could add d to that list using the method described. But this fact is irrelevant

to the argument. The argument wasn’t that there is some unlistable real number,

d—some real number d that is somehow prevented from occurring in the

range of any one-to-one function whose domain is N. That would be absurd.

The argument was rather that no one list can be complete; any list (i.e., any

one-to-one function whose domain is N) will leave out some real numbers.

The left-out real numbers can appear on other lists, but that’s beside the point.

Compare: if a thousand people show up to eat at a small restaurant, many

people will be left out. That’s not to say that any individual person is incapable

of entering; it’s just to say that not everyone can enter at once. No matter who

enters, others will be left out in the cold.

Exercise 1.4* For any set, A, the powerset of A is de�ned as the

set of all A’s subsets. Write out the de�nition of the powerset of A
in the “{u : . . .}” notation. Write out the powerset of {2,4,6} in the

braces notation (the one where you list each member of the set).

Exercise 1.5* Is N equinumerous with the set Z of all integers,

negative, positive, and zero: {· · · − 3,−2,−1,0,1,2,3, . . .}?

Chapter 2

Propositional Logic

W
e begin with the simplest logic commonly studied: propositional logic.

Despite its simplicity, it has great power and beauty.

2.1 Grammar of PL
We’re going to approach propositional logic by studying a formal language.

And the �rst step in the study of a formal language is always to rigorously de�ne

the language’s grammar.

If all you want to do is to use and understand the language of logic, you

needn’t be so careful about grammar. For even without a precisely formulated

grammar, you can intuitively recognize that things like this make sense:

P→Q
R∧ (∼S↔P)

whereas things like this do not:

→PQR∼
(P∼Q∼(∨

P ⊕Q

But to make any headway in metalogic, we will need more than an intuitive

understanding of what makes sense and what does not. We will need a precise

de�nition that has the consequence that only the strings of symbols in the �rst

group “make sense”.

30

CHAPTER 2. PROPOSITIONAL LOGIC 31

Grammatical strings of symbols (i.e., ones that “make sense”) are called

well-formed formulas, or “formulas” or “wffs” for short. We de�ne these by

�rst carefully de�ning exactly which symbols are allowed to occur in wffs (the

“primitive vocabulary”), and second, carefully de�ning exactly which strings of

these symbols count as wffs. Here is the of�cial de�nition; I’ll explain what it

means in a moment:

Primitive vocabulary:

· Connectives:
1 →, ∼

· Sentence letters: P,Q, R . . . , with or without numerical subscripts

· Parentheses: (,)

Definition of wff:

i) Every sentence letter is a PL-wff

ii) If φ and ψ are PL-wffs then (φ→ψ) and ∼φ are also PL-wffs

iii) Only strings that can be shown to be PL-wffs using i) and ii) are PL-wffs

(We allow numerical subscripts on sentence letters so that we don’t run out

when constructing increasingly complex formulas. Since P1, P2, P3 . . . are all

sentence letters, we have in�nitely many to choose from.)

We will be discussing a number of different logical systems throughout this

book, with differing grammars. What we have de�ned here is the notion of

a wff for one particular language, the language of PL. So strictly, we should

speak of PL-wffs, as the of�cial de�nition does. But usually I’ll just say “wff” if

there is no danger of ambiguity.

Here is how the de�nition works. Its core is clauses i) and ii) (they’re

sometimes called the formation rules). Clause i) says that if you write down a

sentence letter on its own, that counts as a wff. So, for example, the sentence

letter P , all by itself, is a wff. (So is Q, so is P147, and so on. Sentence letters are

often called “atomic” wffs, because they’re not made up of smaller wffs.) Next,

clause ii) tells us how to build complex wffs from smaller wffs. It tells us that

we can do this in two ways. First, it says that if we already have a wff, then we

can put a ∼ in front of it to get another wff. (The resulting wff is often called a

1
Some books use ⊃ instead of→, or ¬ instead of ∼. Other common symbols include & or

· for conjunction, | for disjunction, and ≡ for the biconditional.

CHAPTER 2. PROPOSITIONAL LOGIC 32

“negation”.) For example, since P is a wff (we just used clause i) to establish this),

then ∼P is also a wff. Second, clause ii) says that if we already have two wffs,

then we can put an→ between them, enclose the whole thing in parentheses,

and we get another wff. (The resulting wff is often called a “conditional”, whose

“antecedent” is the wff before the→ and whose “consequent” is the wff after

the→.) For example, since we know that Q is a wff (clause i)), and that ∼P
is a wff (we just showed this a moment ago), we know that (Q→∼P) is also

a wff. This process can continue. For example, we could put an→ between

the wff we just constructed and R (which we know to be a wff from clause i))

to construct another wff: ((Q→∼P)→R). By iterating this procedure, we can

demonstrate the wffhood of arbitrarily complex strings.

Why the greek letters in clause ii)? Well, it wouldn’t be right to phrase it,

for example, in the following way: “if P and Q are wffs, then ∼P and (P→Q)
are also wffs”. That would be too narrow, for it would apply only in the case of

the sentence letters P and Q. It wouldn’t apply to any other sentence letters (it

wouldn’t tell us that∼R is a wff, for example), nor would it allow us to construct

negations and conditionals from complex wffs (it wouldn’t tell us that (P→∼Q)
is a wff). We want to say that for any wff (not just P), if you put a ∼ in front

of it you get another wff; and for any two wffs (not just P and Q), if you put

an→ between them (and enclose the result in parentheses) you get another

wff. That’s why we use the metalinguistic variables “φ” and “ψ”.
2

The practice

of using variables to express generality is familiar; we can say, for example,

“for any integer n, if n is even, then n + 2 is even as well”. Just as “n” here

is a variable for numbers, metalinguistic variables are variables for linguistic

items. (We call them metalinguistic because they are variables we use in our

metalanguage, in order to talk generally about the object language, which is in

this case the formal language of propositional logic.)

What’s the point of clause iii)? Clauses i) and ii) provide only suf�cient

conditions for being a wff, and therefore do not on their own exclude nonsense

combinations of primitive vocabulary like P∼Q∼R, or even strings like P ⊕Q
that include disallowed symbols. Clause iii) rules these strings out, since there

is no way to build up either of these strings from clauses i) and ii), in the way

that we built up the wff (∼P→(P→Q)).
Notice an interesting feature of this de�nition: the very expression we

are trying to de�ne, ‘wff’, appears on the right hand side of clause ii) of the

de�nition. In a sense, we are using the expression ‘wff’ in its own de�nition. But

2
Strictly speaking clause iii) ought to be phrased using corner quotes; see exercise 1.2b.

CHAPTER 2. PROPOSITIONAL LOGIC 33

this “circularity” is benign, because the de�nition is recursive. A recursive (or

“inductive”) de�nition of a concept F contains a circular-seeming clause, often

called the “inductive” clause, which speci�es that if such-and-such objects are

F , then so-and-so objects are also F . But a recursive de�nition also contains

a “base clause”, which speci�es noncircularly that certain objects are F . Even

though the inductive clause rests the status of certain objects as being F s on

whether certain other objects are F s (whose status as F s might in turn depend

on the status of still other objects…), this eventually traces back to the base

clause, which secures F -hood all on its own. Thus, recursive de�nitions are

anchored by their base clauses; that’s what distinguishes them from viciously

circular de�nitions. In the de�nition of wffs, clause i) is the base, and clause ii)

is the inductive clause. The wffhood of the string of symbols ((P→Q)→∼R),
for example, rests on the wffhood of (P→Q) and of ∼R by clause ii); and the

wffhood of these, in turn, rests on the wffhood of P , Q and R, again by clause

ii). But the wffhood of P , Q, and R doesn’t rest on the wffhood of anything

else; clause i) speci�es directly that all sentence letters are wffs.

What happened to ∧, ∨, and↔? The only connectives in our primitive

vocabulary are→ and ∼; expressions like P∧Q, P∨Q, and P↔Q therefore do

not of�cially count as wffs. But we can still use ∧, ∨, and↔ unof�cially, since

we can de�ne those connectives in terms of ∼ and→:

Definitions of ∧, ∨, and↔:

· “φ∧ψ” is short for “∼(φ→∼ψ)”
· “φ∨ψ” is short for “∼φ→ψ”

· “φ↔ψ” is short for “(φ→ψ) ∧ (ψ→φ)” (which is in turn short for

“∼((φ→ψ)→∼(ψ→φ))”)

So, whenever we subsequently write down an expression that includes one of

the de�ned connectives, we can regard it as being short for an expression that

includes only the of�cial connectives, ∼ and→. (Why did we choose these

particular de�nitions? We’ll show below that they generate the usual truth

conditions for ∧, ∨, and↔.)

Our choice to begin with→ and∼ as our of�cial connectives was somewhat

arbitrary. We could have started with∼ and ∧, and de�ned the others as follows:

· “φ∨ψ” is short for “∼(∼φ∧∼ψ)”
· “φ→ψ” is short for “∼(φ∧∼ψ)”

CHAPTER 2. PROPOSITIONAL LOGIC 34

· “φ↔ψ” is short for “(φ→ψ)∧ (ψ→φ)”

And other alternate choices are possible. (Why did we choose only a small num-

ber of primitive connectives, rather than including all of the usual connectives?

Because, as we will see, it makes metalogic easier.)

The de�nition of wff requires conditionals to have outer parentheses. P→Q,

for example, is of�cially not a wff; one must write (P→Q). But informally, I’ll

often omit those outer parentheses. And I’ll sometimes write square brackets

instead of the of�cial round ones (for example, “[(P→Q)→R]→P”) to improve

readability.

2.2 The semantic approach to logic
In the next section I will introduce a “semantics” for propositional logic, and

formal representations of logical truth and logical consequence of the semantic

(model-theoretic) variety (recall section 1.5).

On the semantic conception, logical consequence amounts to: truth-preser-

vation in virtue of the meanings of the logical constants. This slogan isn’t

perfectly clear, but it does lead to a clearer thought: suppose we keep the

meanings of an argument’s logical constants �xed, but vary everything else. If

the argument remains truth-preserving no matter how we vary everything else,

then it would seem to preserve truth “in virtue of” the meanings of its logical

constants. But what is to be included in “everything else”?

Here is an attractive picture of truth and meaning. The truth of a sentence

is determined by two factors, meaning and the world. A sentence’s meaning

determines the conditions under which its true—the ways the world would have

to be, in order for that sentence to be true. If the world is one of the ways picked

out by the sentence’s truth conditions, then the sentence is true; otherwise, not.

Furthermore, a sentence’s meaning is typically determined by the meanings of

its parts—both its logical constants and its nonlogical expressions. So: three

elements determine whether a sentence is true: the world, the meanings of its

nonlogical expressions, and the meanings of its logical constants.
3

Now we can say what “everything else” means. Since we’re holding con-

stant the third element (the meanings of logical constants), varying everything

else means varying the �rst two elements. The clearer thought about logical

consequence, then, is that if an argument remains truth-preserving no matter

3
And also a fourth element: its syntax. We hold this constant as well.

CHAPTER 2. PROPOSITIONAL LOGIC 35

how we vary i) the world, and ii) the meanings of nonlogical expressions, then

its premises logically imply its conclusion.

To turn this clearer, but still not perfectly clear, thought into a formal ap-

proach, we need to do two things. First, we need mathematical representations—

I’ll call them con�gurations—of variations of types i) and ii). A con�guration

is a mathematical representation, both of the world and of the meanings of

nonlogical expressions. Second, we need to de�ne the conditions under which

a sentence of the formal language in question is true in one of these con�gu-

rations. When we’ve done both things, we’ll have a semantics for our formal

language.

One thing such a semantics is good for, is giving a formalization, of the

semantic variety, of the notions of logical consequence and logical truth. This

formalization represents one formula as being a logical consequence of others

iff it is true in any con�guration in which the latter formulas are true, and

represents a formula as being a logical truth iff it is true in all con�gurations.

But a semantics for a formal language is good for something else as well.

De�ning con�gurations, and truth-in-a-con�guration, can shed light on mean-

ing in natural and other interpreted languages.

Philosophers disagree over how to understand the notion of meaning in

general. But meaning surely has something to do with truth conditions, as in the

attractive picture above. If so, a formal semantics can shed light on meaning, if

the ways in which con�gurations render formal sentences true and false are

parallel to the ways in which the real world plus the meanings of words render

corresponding interpreted sentences true and false. Expressions in formal

languages are typically intended to represent bits of interpreted languages. The

PL logical constant∼, for example, represents the English logical constant ‘not’;

the sentence letters represent English declarative sentences, and so on. Part of

specifying a con�guration will be specifying what the nonlogical expressions

mean in that con�guration. And the de�nition of truth-in-a-con�guration will

be constructed so that the contributions of the symbolic logical constants to

truth-conditions will mirror the contributions to truth conditions of the logical

constants that they represent.

2.3 Semantics of propositional logic
Our semantics for propositional logic is really just a more rigorous version

of the method of truth tables from introductory logic books. What a truth

CHAPTER 2. PROPOSITIONAL LOGIC 36

table does is depict how the truth value of a given formula is determined by the

truth values of its sentence letters, for each possible combination of truth values

for its sentence letters. To do this nonpictorially, we need to de�ne a notion

corresponding to “a possible combination of truth values for sentence letters”:

Definition of interpretation: A PL-interpretation is a function I , that

assigns to each sentence letter either 1 or 0

The numbers 1 and 0 are our truth values. (Sometimes the letters ‘T’ and

‘F’ are used instead.) So an interpretation assigns truth values to sentence

letters. Instead of saying “let P be false, and Q be true”, we can say: let I be

an interpretation such that I (P) = 0 and I (Q) = 1. (As with the notion of a

wff, we will have different de�nitions of interpretations for different logical

systems, so strictly we must speak of PL-interpretations. But usually it will be

�ne to speak simply of interpretations when it’s clear which system is at issue.)

An interpretation assigns a truth value to each of the in�nitely many sentence

letters. To picture one such interpretation we could begin as follows:

I (P) = 1
I (Q) = 1
I (R) = 0
I (P1) = 0
I (P2) = 1

but since there are in�nitely many sentence letters, the picture could not be

completed. And this is just one interpretation among in�nitely many; any other

combination of assigned 1s and 0s to the in�nitely many sentence letters counts

as a new interpretation.

Once we settle what truth values a given interpretation assigns to the sen-

tence letters, the truth values of complex sentences containing those sentence

letters are thereby �xed. The usual, informal, method for showing exactly how

those truth values are �xed is by giving truth tables for each connective. The

CHAPTER 2. PROPOSITIONAL LOGIC 37

standard truth tables for the→ and ∼ are the following:
4

→ 1 0
1 1 0
0 1 1

∼
1 0
0 1

What we will do, instead, is write out a formal de�nition of a function—the

valuation function—that assigns truth values to complex sentences as a function

of the truth values of their sentence letters—i.e., as a function of a given

intepretation I . But the idea is the same as the truth tables: truth tables are

really just pictures of the de�nition of a valuation function.

Definition of valuation: For any PL-interpretation, I , the PL-valuation

for I , VI , is de�ned as the function that assigns to each wff either 1 or 0, and

which is such that, for any sentence letter α and any wffs φ and ψ:

VI (α) =I (α)
VI (φ→ψ) = 1 iff either VI (φ) = 0 or VI (ψ) = 1

VI (∼φ) = 1 iff VI (φ) = 0

Intuitively: we begin by choosing an interpretation function, which �xes the

truth values for sentence letters. Then the valuation function assigns corre-

sponding truth values to complex sentences depending on what connectives

they’re built up from: a negation is true iff the negated formula is false, and a

conditional is true when its antecedent is false or its consequent is true.

We have here another recursive de�nition: the valuation function’s values

for complex formulas are determined by its values for smaller formulas; and this

procedure bottoms out in the values for sentence letters, which are determined

directly by the interpretation function I .

Notice how the de�nition of the valuation function contains the English

logical connectives ‘either…or’, and ‘iff ’. I used these English connectives

rather than the logical connectives ∨ and↔, because at that point I was not

4
The→ table, for example, shows what truth value φ→ψ takes on depending on the truth

values of its parts. Rows correspond to truth values for φ, columns to truth values for ψ. Thus,

to ascertain the truth value of φ→ψ when φ is 1 and ψ is 0, we look in the 1 row and the 0
column. The listed value there is 0—the conditional is false in this case. The ∼ table has only

one “input-column” and one “result-column” because ∼ is a one-place connective.

CHAPTER 2. PROPOSITIONAL LOGIC 38

writing down wffs of the language of study (in this case, the language of propo-

sitional logic). I was rather using sentences of English—our metalanguage, the

informal language we’re using to discuss the formal language of propositional

logic—to construct my de�nition of the valuation function. My de�nition

needed to employ the logical notions of disjunction and biconditionalization,

the English words for which are ‘either…or’ and ‘iff’.

One might again worry that something circular is going on. We de�ned

the symbols for disjunction and biconditionalization, ∨ and↔, in terms of

∼ and → in section 2.1, and now we’ve de�ned the valuation function in

terms of disjunction and biconditionalization. So haven’t we given a circular

de�nition of disjunction and biconditionalization? No. When we de�ne the

valuation function, we’re not trying to de�ne logical concepts such as negation,

conjunction, disjunction, conditionalization, and biconditionalization, and

so on, at all. Reductive de�nition of these very basic concepts is probably

impossible (though one can de�ne some of them in terms of the others). What

we are doing is starting with the assumption that we already understand the

logical concepts, and then using those concepts to provide a semantics for a

formal language. This can be put in terms of object- and meta-language: we use

metalanguage connectives, such as ‘iff’ and ‘or’, which we simply take ourselves

to understand, to provide a semantics for the object language connectives ∼
and→.

An elementary fact will be important in what follows: for every wff φ and

every PL-interpretation I , VI (φ) is either 0 or 1, but not both.
5

Equivalently:

a formula has one of the truth values iff it lacks the other. That this is a fact

is built into the de�nition of the valuation function for PL. First of all, VI is

de�ned as a function, and so it can’t assign both the number 0 and the number 1
to a wff. And second, VI is de�ned as a function that assigns either 1 or 0 to each
wff (thus, in the case of the second and third clauses, if a complex wff fails the

condition for getting assigned 1, it automatically gets assigned 0.)

Back to the de�nition of the valuation function. The de�nition applies only

to of�cial wffs, which can contain only the primitive connectives→ and ∼. But

sentences containing ∧, ∨, and↔ are abbreviations for of�cial wffs, and are

therefore indirectly governed by the de�nition. In fact, given the abbreviations

de�ned in section 2.1, we can show that the de�nition assigns the intuitively

5
This fact won’t hold for all the valuation functions we’ll consider in this book; in chapter

3 we will consider “trivalent” semantic systems in which some formulas are assigned neither 1
nor 0.

CHAPTER 2. PROPOSITIONAL LOGIC 39

correct truth values to sentences containing ∧, ∨, and↔. In particular, we can

show that for any PL-interpretation I , and any wffs ψ and χ ,

VI (ψ∧χ) = 1 iff VI (ψ) = 1 and VI (χ) = 1
VI (ψ∨χ) = 1 iff either VI (ψ) = 1 or VI (χ) = 1

VI (ψ↔χ) = 1 iff VI (ψ) =VI (χ)

I’ll show that the �rst statement is true here; the others are exercises for the

reader. I’ll write out this proof in excessive detail, to make it clear exactly how

the reasoning works.

Example 2.1: Proof that ∧ gets the right truth condition. We are to show that

for every wffs ψ and χ , and any PL-interpretation I , VI (ψ∧χ) = 1 iff VI (ψ) =
1 and VI (χ) = 1. So, letψ andχ be any wffs, and letI be any PL-interpretation;

we must show that: VI (ψ∧χ) = 1 iff VI (ψ) = 1 and VI (χ) = 1. The expression

ψ∧χ is an abbreviation for the expression ∼(ψ→∼χ). So what we must show

is this: VI (∼(ψ→∼χ)) = 1 iff VI (ψ) = 1 and VI (χ) = 1.

Now, in order to show that a statement A holds iff a statement B holds,

we must �rst show that if A holds, then B holds; then we must show that if B
holds then A holds. So, �rst we must establish that if VI (∼(ψ→∼χ)) = 1, then

VI (ψ) = 1 and VI (χ) = 1. So, we begin by assuming that VI (∼(ψ→∼χ)) = 1,

and we then attempt to show that VI (ψ) = 1 and VI (χ) = 1. Well, since

VI (∼(ψ→∼χ)) = 1, by de�nition of the valuation function, clause for ∼, we

know that VI (ψ→∼χ) = 0. Now, we earlier noted the principle that a wff

has one of the two truth values iff it lacks the other; thus, VI (ψ→∼χ) is not 1.

(Henceforth I won’t mention it when I make use of this principle.) But then,

by the clause in the de�nition of VI for the→, we know that it’s not the case

that: either VI (ψ) = 0 or VI (∼χ) = 1. So, VI (ψ) = 1 and VI (∼χ) = 0. From

the latter, by the clause for ∼, we know that VI (χ) = 1. So now we have what

we wanted: VI (ψ) = 1 and VI (χ) = 1.

Next we must show that if VI (ψ) = 1 and VI (χ) = 1, then VI (∼(ψ→∼χ)) =
1. This is sort of like undoing the previous half. Suppose that VI (ψ) = 1 and

VI (χ) = 1. Since VI (χ) = 1, by the clause for ∼, VI (∼χ) = 0; but now since

VI (ψ) = 1 and VI (∼χ) = 0, by the clause for→ we know that VI (ψ→∼χ) = 0;

then by the clause for ∼, we know that VI (∼(ψ→∼χ)) = 1, which is what we

were trying to show.

Example 2.1 is the �rst of many metalogic proofs we will be constructing in this

book. (The symbol marks the end of such a proof.) It is an informal argument,

CHAPTER 2. PROPOSITIONAL LOGIC 40

phrased in the metalanguage, which establishes a fact about a formal language.

As noted in section 1.3, metalogic proofs must be distinguished from proofs

in formal systems—from the derivations and truth trees of introductory logic,

and from the axiomatic and sequent proofs we will introduce below. Although

there are no explicit guidelines for how to present metalogic proofs, they are

generally given in a style that is common within mathematics. Constructing

such proofs can at �rst be dif�cult. I offer the following pointers. First, keep in

mind exactly what you are trying to prove. (In your �rst few proofs, it might

be a good idea to begin by writing down: “what I am trying to prove is…”.)

Second, keep in mind the de�nitions of all the relevant technical terms (the

de�nition of ψ∧χ , for instance.) Third, keep in mind exactly what you are

given. (In the preceding, for example, the important bit of information you are

given is the de�nition of the valuation function; that de�nition tells you the

conditions under which valuation functions assign 1s and 0s to negations and

conditionals.) Fourth, keep in mind the canonical methods for establishing

claims of various forms. (For example, if you want to show that a certain claim

holds for every two wffs, begin with “let ψ and χ be any wffs”; show that the

claim holds for ψ and χ ; and conclude that the claim holds for all pairs of

wffs. If you want to establish something of the form “if A, then B”, begin by

saying “suppose A”, go on to reason your way to “B”, and conclude: “and so, if

A then B .” Often it can be helpful to reason by reductio ad absurdum: assume

the opposite of the assertion you are trying to prove, reason your way to a

contradiction, and conclude that the assertion is true since its opposite leads to

contradiction.) Fifth: practice, practice, practice. As we progress, I’ll gradually

speed up the presentation of such proofs, omitting more and more details when

they seem obvious. You should feel free to do the same; but it may be best

to begin by constructing proofs very deliberately, so that later on you know

exactly what details you are omitting.

Let’s re�ect on what we’ve done so far. We have de�ned the notion of a PL-

interpretation, which assigns 1s and 0s to sentence letters of the formal language

of propositional logic. And we have also de�ned, for any PL-interpretation, a

corresponding PL-valuation function, which extends the interpretation’s as-

signment of 1s and 0s to complex wffs of PL. Note that we have been informally

speaking of these assignments as assignments of truth values. That’s because

the assignment of 1s and 0s to complex wffs mirrors the way complex natural

language sentences get their truth values, as a function of the truth values of

their parts. For example, the ∼ of propositional logic is supposed to represent

the English phrase ‘it is not the case that’. Accordingly, just as an English

CHAPTER 2. PROPOSITIONAL LOGIC 41

sentence “It is not the case that φ” is true iff φ is false, one of our valuation

functions assigns 1 to ∼φ iff it assigns 0 to φ. But strictly, it’s probably best not

to think of wffs of our formal language as genuinely having truth values. They

don’t genuinely have meanings after all. Our assignments of 1 and 0 represent
the having of truth values.

A semantics for a formal language, recall, de�nes two things: con�gurations

and truth-in-a-con�guration. In the propositional logic semantics we have

laid out, the con�gurations are the interpretation functions. A con�guration is

supposed to represent a way for the world to be, plus the meanings of nonlogical

expressions. The only nonlogical expressions in PL are the sentence letters;

and, for the purposes of PL anyway, their meanings can be represented simply

as truth-values. And once we’ve speci�ed a truth-value for each sentence letter,

we’ve already represented the world as much as we can in PL. Thus, PL-

interpretations are appropriate con�gurations. As for truth-in-a-con�guration,

this is accomplished by the valuation functions. For any PL-interpretation,

its corresponding valuation function speci�es, for each complex wff, what

truth value that wff has in that interpretation. Thus, for each wff (φ) and

each con�guration (I), we have speci�ed the truth value of that wff in that

con�guration (VI (φ)).
Onward. We are now in a position to de�ne the semantic versions of the

notions of logical truth and logical consequence for propositional logic. The

semantic notion of a logical truth is that of a valid formula:

Definition of validity: A wff φ is PL-valid iff for every PL-interpretation,

I , VI (φ) = 1

We write “�
PL
φ” for “φ is PL-valid”. (When it’s obvious which system

we’re talking about, we’ll omit the subscript on �.) The valid formulas of

propositional logic are also called tautologies.
As for logical consequence, the semantic version of this notion is that of a

single formula’s being a semantic consequence of a set of formulas:

Definition of semantic consequence: A wff φ is a PL-semantic consequence

of a set of wffs Γ iff for every PL-interpretation, I , if VI (γ) = 1 for each γ
such that γ ∈ Γ, then VI (φ) = 1

That is, φ is a PL-semantic consequence of Γ iff φ is true whenever each

member of Γ is true. We write “Γ �
PL
φ” for “φ is a PL-semantic consequence

of Γ”. (As usual we’ll often omit the “PL” subscript; and further, let’s improve

CHAPTER 2. PROPOSITIONAL LOGIC 42

readability by writing “φ1, . . . ,φn �ψ” instead of “{φ1, . . . ,φn} �ψ”. That is,

let’s drop the set braces when it’s convenient to do so.)

A related concept is that of semantic equivalence. Formulasφ andψ are said to

be (PL-) semantically equivalent iff each (PL-) semantically implies the other.

For example, φ→ψ and ∼ψ→∼φ are semantically equivalent. Notice that

we could just as well have worded the de�nition thus: semantically equivalent

formulas are those that have exactly the same truth value in every interpretation.

Thus, there is a sense in which semantically equivalent formulas “say the same

thing”: they have the same truth-conditional content.

Just as it’s probably best not to think of sentences of our formal language

as genuinely having truth values, it’s probably best not to think of them as

genuinely being logically true or genuinely standing in the relation of logi-

cal consequence. The notions we have just de�ned, of PL-validity and PL-

semantic-consequence, are just formal representations of logical truth and

logical consequence (semantically conceived). Indeed, the de�nitions we have

given are best thought of as representing, rather than really being, a semantics.

Further, when we get to formal provability, the de�nitions we will give are

probably best thought of as representing facts about provability, rather than

themselves de�ning a kind of provability. But forgive me if I sometimes speak

loosely as if formal sentences really do have these features, rather than just

representing them.

By the way, we can now appreciate why it was important to set up our

grammar so carefully. The valuation function assigns truth values to complex

formulas based on their form. One clause in its de�nition kicks in for atomic

wffs, another clause kicks in for wffs of the form ∼φ, and a third kicks in for

wffs of the form φ→ψ. This works only if each wff has exactly one of these

three forms; only a precise de�nition of wff guarantees this.

Exercise 2.1 Given the de�nitions of the de�ned symbols ∨ and

↔, show that for any PL-interpretation, I , and any wffs ψ and χ ,

VI (ψ∨χ) = 1 iff either VI (ψ) = 1 or VI (χ) = 1
VI (ψ↔χ) = 1 iff VI (ψ) =VI (χ)

CHAPTER 2. PROPOSITIONAL LOGIC 43

2.4 Establishing validity and invalidity in PL
Now that we have set up a semantics, we can establish semantic facts about

particular wffs. For example:

Example 2.2: Proof that �
PL
(P→Q)→(∼Q→∼P). To show a wff to be PL-

valid, we must show that it is true in every PL-interpretation. So, let I be any

PL-interpretation, and suppose for reductio that VI ((P→Q)→(∼Q→∼P)) = 0.

This assumption leads to a contradiction, as the following argument shows:

i) VI ((P→Q)→(∼Q→∼P)) = 0 (reductio assumption)

ii) So, by the de�nition of a valuation function, clause for the→, VI (P→Q) =
1 and…

iii) …VI (∼Q→∼P) = 0

iv) Given iii), again by the clause for the→, VI (∼Q) = 1 and …

v) …VI (∼P) = 0

vi) Given iv), by the clause for the ∼, VI (Q) = 0.

vii) Similarly, v) tells us that VI (P) = 1.

viii) From vii) and vi), by the clause for the→ we know that VI (P→Q) = 0,

which contradicts line ii).

Here again we have given a metalogic proof: an informal mathematical ar-

gument establishing a fact about one of our formal languages. (The conclusion

of the argument was not suf�ciently impressive to merit the �ourish at the

end.) There is nothing special about the form that this argument took. One

could just as well have established the fact that �
PL
(P→Q)→(∼Q→∼P) by

constructing a truth table, as one does in introductory textbooks, for such a

construction is in effect a pictorial metalogic proof that a certain formula is

PL-valid.

Arguments establishing facts of semantic consequence are parallel (in this

example we will proceed more briskly):

Example 2.3: Proof that P→(Q→R) �Q→(P→R). We must show that in

any PL-interpretation in which P→(Q→R) is true, Q→(P→R) is true as well.

Let I be any PL-interpretation; we then reason as follows:

CHAPTER 2. PROPOSITIONAL LOGIC 44

i) Suppose for reductio that VI (P→(Q→R)) = 1 but…

ii) …VI (Q→(P→R)) = 0. (From now on we’ll omit the subscripted I .)

iii) line ii) tells us that V(Q) = 1 and V(P→R) = 0, and hence that V(R) = 0.

So V(Q→R) = 0.

iv) Since V(P→R) = 0 (line iii)), V(P) = 1. So then, by iii), V(P→(Q→R)) =
0. This contradicts i).

One can also establish facts of invalidity and failures of semantic conse-

quence:

Example 2.4: Proof that 2 ((P∧R)→Q)→(R→Q). To be valid is to be true

in all interpretations; so to be invalid (i.e., not valid) is to be false in at least one

interpretation. So all we must do is �nd one interpretation in which this wff

is false. Let I be an interpretation such that I (R) = 1 and I (P) =I (Q) = 0.

Then VI (P∧R) = 0 (example 2.1), so VI ((P∧R)→Q) = 1. But since VI (R) = 1
and VI (Q) = 0, VI (R→Q) = 0. So VI ((P∧R)→Q)→(R→Q)) = 0

Example 2.5: Proof that P→R 2 (P∨Q)→R. Consider a PL-interpretation

in which P and R are false, and in which Q is true. P→R is then true (since its

antecedent is false), but P∨Q is true (since Q is true—see exercise 2.1) while R
is false, so (P∨Q)→R is false.

I’ll end this section by noting a certain fact about validity in propositional

logic: it is mechanically “decidable”. That is, a computer program could be

written that is capable of telling, for any given formula, whether or not that

formula is valid. The program would simply construct a complete truth table

for the formula in question. To give a rigorous proof of this fact would take us

too far a�eld, since we would need to give a rigorous de�nition of what counts

as a computer program, but the point is intuitively clear.

Exercise 2.2 Establish each of the following facts:

a) � [P∧(Q∨R)]→ [(P∧Q)∨(P∧R)]

b) (P↔Q)∨ (R↔S) 2 P∨R

c) ∼(P∧Q) and ∼P∨∼Q are semantically equivalent.

CHAPTER 2. PROPOSITIONAL LOGIC 62

begin: (R→. That looks like the consequent of PL2. So I wrote out an instance

of PL2 whose consequent was the formula I was trying to prove; that gave me

line 1 of the proof. Then I tried to �gure out a way to get the antecedent of

line 1; namely, R→(P→(Q→P)). And that turned out to be pretty easy. The

consequent of this formula, P→(Q→P) is an axiom (line 2 of the proof). And

if you can get a formula φ, then you choose anything you like—say, R,—and

then get R→φ, by using PL1 and modus ponens; that’s what I did in lines 3

and 4.

As you can see, the proofs are getting harder. And they get harder still.

Fortunately, we will be able to develop some machinery to make them easier;

but that will need to wait for a couple of sections.

Exercise 2.4 Establish each of the following facts. For these prob-

lems, do not use the “toolkit” assembled below; construct the ax-

iomatic proofs “from scratch”. However, you may use a fact you

prove in an earlier problem in later problems.

a) ` P→P

b) ` (∼P→P)→P

c) ∼∼P ` P

2.7 Soundness of PL and proof by induction
Note: the next three sections are more dif�cult than the preceding sections,

and may be skipped without much loss. If you decide to work through the

more dif�cult sections dealing with metalogic later in the book (for example

sections 6.5 and 6.6), you might �rst return to these sections.

In this chapter we have taken both a proof-theoretic and a semantic approach

to propositional logic. In each case, we introduced formal notions of logical

truth and logical consequence. For the semantic approach, these notions

involved truth in PL-interpretations. For the proof-theoretic approach, we

considered two formal de�nitions, one involving sequent proofs, the other

involving axiomatic proofs.

An embarrassment of riches! We have multiple formal accounts of our

logical notions. But in fact, it can be shown that all three of our de�nitions yield

CHAPTER 2. PROPOSITIONAL LOGIC 63

exactly the same results. Here I’ll prove this just for the notion of a theorem
(last line of an axiomatic proof) and the notion of a valid formula (true in all

PL-interpretations). I’ll do this by proving the following two statements:

Soundness of PL: Every PL-theorem is PL-valid

Completeness of PL: Every PL-valid wff is a PL-theorem

Soundness is pretty easy to prove; we’ll do that in a moment. Completeness is

harder; we’ll prove that in section 2.9. Soundness and completeness together

tell us that PL-validity and PL-theoremhood exactly coincide.

But �rst a short detour: we need to introduce a method of proof that

is ubiquitous throughout metalogic (as well as mathematics generally), the

method of induction. The basic idea, in its simplest form, is this. Suppose we

have in�nitely many objects lined up like this:

• • • • . . .

And suppose we want to show that each of these objects has a certain property.

How to do it?

The method of induction directs us to proceed in two steps. First, show

that the �rst object has the property:

'&%$!"#• • • • . . .

This is called the “base case” of the inductive proof. Next, show that quite

generally, whenever one object in the line has the property, then the next must

have the property as well. This is called the “inductive step” of the proof. The

method of induction then says: if you’ve established those two things, you can

go ahead and conclude that all the objects in the line have the property. Why

is this conclusion justi�ed? Well, since the �rst object has the property, the

second object must have the property as well, given the inductive step:

'&%$!"#• '' '&%$!"#• • • . . .

But then another application of the inductive step tells us that the third object

has the property as well:

'&%$!"#• '&%$!"#• '' '&%$!"#• • . . .

CHAPTER 2. PROPOSITIONAL LOGIC 64

And so on; all objects in the line have the property:

'&%$!"#• '&%$!"#• '&%$!"#• '&%$!"#• . . .

That is how induction works when applied to objects lined up in the manner

depicted: there is a �rst object in line; after each object there is exactly one

further object; and each object appears some �nite number of jumps after the

�rst object. Induction can also be applied to objects structured in different

ways. Consider, for example, the following in�nite grid of objects:

•

.

.

.

.

.

.

.

.

.

• •

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

At the bottom of this grid there are three dots. Every pair of these three dots

combines to produce one new dot. (For example, the leftmost dot on the second

from the bottom level is produced by the leftmost two dots on the bottom

level.) The resulting three dots (formed from the three pairs drawn from the

three dots on the bottom level) form the second level of the grid. These three

dots on the second level produce the third level in the same way, and so on.

Suppose, now, that one could prove that the bottom three dots have some

CHAPTER 2. PROPOSITIONAL LOGIC 65

property:

•

.

.

.

.

.

.

.

.

.

• •

•

OO ??����������������� •

__?????????????????

??����������������� •

__?????????????????

OO

'&%$!"#•

OO ??����������������� '&%$!"#•

__?????????????????

??����������������� '&%$!"#•

__?????????????????

OO

(This is the “base case”.) And suppose further that one could prove that when-

ever two dots with the property combine, the resulting dot also has the property

(“inductive step”). Then, just as in the previous example, induction allows us

to conclude that all the dots in the grid have the property. Given the base case

and the inductive step, we know that the dots on the second level of the grid

have the property:

•

.

.

.

.

.

.

.

.

.

• •

'&%$!"#•

OO ??����������������� '&%$!"#•

__?????????????????

??����������������� '&%$!"#•

__?????????????????

OO

'&%$!"#•

KS ;C�����������������

����������������� '&%$!"#•

[c?????????????????

?????????????????

;C�����������������

����������������� '&%$!"#•

[c?????????????????

?????????????????

KS

But then, given the inductive step, we know that the dots on the third level

have the property. And so on, for all the other levels.

In general, induction is a method for proving that each member of a certain

collection of objects has a property. It works when (but only when) each object

in the collection results from some “starting objects” by a �nite number of

iterations of some “operations”. In the base case one proves that the starting

CHAPTER 2. PROPOSITIONAL LOGIC 66

objects have the property; in the induction step one proves that the operations

preserve the property, in the sense that whenever one of the operations is applied

to some objects with the property, the resulting new object has the property as

well; and �nally one concludes that all objects have the property.

This idea manifests itself in logic in a few ways. One is in a style of proof

sometimes called “induction on formula construction” (or: induction “on the

number of connectives” of the formula). Suppose we want to establish that

absolutely every wff has a certain property, p. The method of proof by induction

on formula construction tells us to �rst establish the following two claims:

b) every atomic wff (i.e. every sentence letter) has property p

i) for any wffs φ and ψ, if both φ and ψ have property p, then the wffs ∼φ
and φ→ψ also have property p

Once these are established, proof by induction allows us to conclude that every

wff has property p. Why is this conclusion justi�ed? Recall the de�nition

of a wff from section 2.1: each wff is built up from atomic wffs by repeated

application of clause ii): “if φ and ψ are wffs then ∼φ and φ→ψ are also wffs”.

So each wff is the culmination of a �nite process that starts with atomic wffs and

continues by building conditionals and negations from wffs formed in previous

steps of the process. But claim b) (the base case) shows that the starting points
of this process all have property p. And claim i) (the induction step) shows that

the subsequent steps in this process preserve property p: if the formulas one has

built up so far have property p, then the next formula in the process (built up of

previous formulas using either→ or ∼) is guaranteed to also have p. So all wffs

have property p. In terms of the general idea of inductive proof, the atomic

wffs are our “starting objects” (like the bottom three dots in the grid), and the

rules of grammar for ∼ and→ which generate complex wffs from simpler wffs

are the “operations”.

Here is a simple example of proof by induction on formula construction:

Proof that every wff contains a �nite number of sentence letters. We are trying to

prove a statement of the form: every wff has property p. The property p
in this case is having a �nite number of different sentence letters. Our proof has

two separate steps:

base case: here we must show that every atomic sentence has the property.

This is obvious—atomic sentences are just sentence letters, and each of them

CHAPTER 2. PROPOSITIONAL LOGIC 67

contains one sentence letter, and thus �nitely many different sentence letters.

induction step: here we must show that if wffs φ and ψ have property p, then

so do ∼φ and φ→ψ. So we begin by assuming:

formulas φ and ψ each have �nitely many different sentence letters (ih)

This assumption is often called the “inductive hypothesis”. And we must go on

to show that both ∼φ and φ→ψ have �nitely many different sentence letters.

This, too, is easy. ∼φ has as many different sentence letters as does φ; since ih)

tells us that φ has �nitely many, then so does ∼φ. As for φ→ψ, it has, at most,

n+m sentence letters, where n and m are the number of different sentence

letters in φ and ψ, respectively; ih) tells us that n and m are �nite, and so n+m
is �nite as well.

We’ve shown that every atomic formula has the property having a �nite
number of different sentence letters; and we’ve shown that the property is inherited

by complex formulas built according to the formation rules. But every wff is

either atomic, or built from atomics by a �nite series of applications of the

formation rules. Therefore, by induction, every wff has the property.

A different form of inductive proof is called for in the following proof of

soundness:

Proof of soundness for PL. Unlike the previous inductive proof, here we are not

trying to prove something of the form “Every wff has property p”. Instead,

we’re trying to prove something of the form “Every theorem has property p”.

Nevertheless we can still use induction, only we need to use induction of a

slightly different sort from induction on formula construction. Consider: a

theorem is any line of a proof. And every line of every proof is the culmination

of a �nite series of wffs, in which each member is either an axiom, or follows

from earlier lines by modus ponens. So the conditions are right for an inductive

proof. The “starting points” are the axioms; and the “operation” is the inference

of a new line from earlier lines using modus ponens. If we can show that the

starting points (axioms) have the property of validity, and that the operation

(modus ponens) preserves the property of validity, then we can conclude that

every wff in every proof—i.e., every theorem—has the property of validity.

This sort of inductive proof is called induction “on the proof of a formula” (or

induction “on the length of the formula’s proof”).

base case: here we need to show that every PL-axiom is valid. This is

tedious but straightforward. Take PL1, for example. Suppose for reduc-

tio that some instance of PL1 is invalid, i.e., for some PL-interpretation I ,

CHAPTER 2. PROPOSITIONAL LOGIC 68

VI (φ→(ψ→φ)) = 0. Thus, VI (φ) = 1 and VI (ψ→φ) = 0. Given the latter,

VI (φ) = 0—contradiction. Analogous proofs can be given that instances of

PL2 and PL3 are also valid (exercise 2.5).

induction step: here we begin by assuming that every line in a proof up to

a certain point is valid (the “inductive hypothesis”); we then show that if one

adds another line that follows from earlier lines by the rule modus ponens, that

line must be valid too. I.e., we’re trying to show that “modus ponens preserves

validity”. So, assume the inductive hypothesis: that all the earlier lines in the

proof are valid. And now, consider the result of applying modus ponens. That

means that the new line we’ve added to the proof is some formula ψ, which

we’ve inferred from two earlier lines that have the forms φ→ψ and φ. We

must show that ψ is a valid formula, i.e., is true in every interpretation. So

let I be any interpretation. By the inductive hypothesis, all earlier lines in

the proof are valid, and hence both φ→ψ and φ are valid. Thus, VI (φ) = 1
and VI (φ→ψ) = 1. But if VI (φ) = 1 then VI (ψ) can’t be 0, for if it were, then

VI (φ→ψ) would be 0, and it isn’t. Thus, VI (ψ) = 1.

(If our system had included rules other than modus ponens, we would have

needed to show that they too preserve validity. The paucity of rules in axiomatic

systems makes the construction of proofs within those systems a real pain in

the neck, but now we see how it makes metalogical life easier.)

We’ve shown that the axioms are valid, and that modus ponens preserves

validity. All theorems are generated from the axioms via modus ponens in a

�nite series of steps. So, by induction, every theorem is valid.

One nice thing about soundness is that it lets us establish facts of unprov-
ability. Soundness says “if ` φ then � φ”. Equivalently, it says: “if 2 φ then

0 φ”. So, to show that something isn’t a theorem, it suf�ces to show that it

isn’t valid. Consider, for example, the formula (P→Q)→(Q→P). There exist

PL-interpretations in which the formula is false, namely, PL-interpretations in

which P is 0 and Q is 1. So, (P→Q)→(Q→P) is not valid (since it’s not true

in all PL-interpretations.) But then soundness tells us that it isn’t a theorem

either. In general: given soundness, in order to show that a formula isn’t a

theorem, all you need to do is �nd an interpretation in which it isn’t true.

Before we leave this section, let me reiterate the distinction between the

two types of induction most commonly used in metalogic. Induction on the

proof of a formula (the type of induction used to establish soundness) is used

when one is establishing a fact of the form: every theorem has a certain property
p. Here the base case consists of showing that the axioms have the property p,

CHAPTER 2. PROPOSITIONAL LOGIC 69

and the inductive step consists of showing that the rules of inference preserve

p—i.e., in the case of modus ponens: that if φ and φ→ψ both have property

p then so does ψ. (Induction on proofs can also be used to show that all wffs

provable from a given set Γ have a given property; in that case the base case

would also need to include a demonstration that all members of Γ have the

property.) Induction on formula construction (the type of induction used to

show that all formulas have �nitely many sentence letters), on the other hand,

is used when one is trying to establish a fact of the form: every formula has
a certain property p. Here the base case consists of showing that all sentence

letters have property p; and the inductive step consists of showing that the

rules of formation preserve p—i.e., that if φ and ψ both have property p, then

both (φ→ψ) and ∼φ also will have property p.

If you’re ever proving something by induction, it’s important to identify

what sort of inductive proof you’re constructing. What are the entities you’re

dealing with? What is the property p? What are the starting points, and what

are the operations generating new entities from the starting points? If you’re

trying to construct an inductive proof and get stuck, you should return to these

questions and make sure you’re clear about their answers.

CHAPTER 2. PROPOSITIONAL LOGIC 70

Exercise 2.5 Finish the soundness proof by showing that all in-

stances of axiom schemas PL2 and PL3 are valid.

Exercise 2.6 Consider the following (strange) system of propo-

sitional logic. The de�nition of wffs is the same as for standard

propositional logic, and the rules of inference are the same (just one

rule: modus ponens); but the axioms are different. For any wffs φ
and ψ, the following are axioms:

φ→φ
(φ→ψ)→(ψ→φ)

Establish the following two facts about this system: (a) every the-

orem of this system has an even number of “∼”s; (b) soundness is

false for this system—i.e., some theorems are not valid formulas.

Exercise 2.7 Show by induction that the truth value of a wff de-

pends only on the truth values of its sentence letters. That is,

show that for any wff φ and any PL-interpretations I and I ′, if

I (α) =I ′(α) for each sentence letter α in φ, then VI (φ) =VI ′(φ).

Exercise 2.8** Suppose that a wff φ has no repetitions of sentence

letters (i.e., each sentence letter occurs at most once in φ.) Show

that φ is not PL-valid.

Exercise 2.9 Prove “strong soundness”: for any set of formulas, Γ,

and any formula φ, if Γ `φ then Γ �φ (i.e., if φ is provable from

Γ then φ is a semantic consequence of Γ.)

Exercise 2.10** Prove the soundness of the sequent calculus. That

is, show that if Γ⇒φ is a provable sequent, then Γ �φ. (No need

to go through each and every detail of the proof once it becomes

repetitive.)

CHAPTER 2. PROPOSITIONAL LOGIC 78

As for the second:

1. ψ→(φ→ψ) PL1

2. ∼(φ→ψ)→∼ψ 1, contraposition 2

3. ∼(φ→ψ) premise

4. ψ 2, 3, MP

φ→ψ,∼φ→ψ `ψ (“excluded middle MP”)

1. φ→ψ premise

2. ∼φ→ψ premise

3. ∼ψ→∼φ 1, contraposition 2

4. ∼ψ→∼∼φ 2, contraposition 2

5. ∼ψ→φ 4, exercise 2.11c, transitivity

6. ψ PL3, 3, MP, 5, MP

Exercise 2.11 Establish each of the following. You may use the

toolkit, including the deduction theorem.

a) `φ→[(φ→ψ)→ψ]

b) ` [φ→(ψ→χ)]→[ψ→(φ→χ)] (“permutation”):

c) `∼∼φ→φ (“double-negation elimination”)

d) `φ→∼∼φ (“double-negation introduction”)

Exercise 2.12 (Long.) Establish the axiomatic correctness of the

rules of inference from our sequent system. For example, in the

case of ∧E, show that φ,ψ `φ∧ψ—i.e., give an axiomatic proof of

∼(φ→∼ψ) from {φ,ψ}. You may use the toolkit.

2.9 Completeness of PL
We’re �nally ready for the completeness proof. We will give what is known as a

“Henkin-proof”, after Leon Henkin, who used similar methods to demonstrate

CHAPTER 2. PROPOSITIONAL LOGIC 79

completeness for (nonmodal) predicate logic. Most of the proof will consist of

assembling various pieces—various de�nitions and facts. The point of these

pieces will become apparent at the end, when we put them all together.

2.9.1 Maximal consistent sets of wffs
Let “⊥” abbreviate “∼(P→P)”. (The idea of ⊥ is that it stands for a generic

contradiction. The choice of ∼(P→P) was arbitrary; all that matters is that ⊥
is the negation of a theorem.) Here are the central de�nitions we’ll need:

Definition of consistency and maximality:

· A set of wffs, Γ, is inconsistent iff Γ ` ⊥. Γ is consistent iff it is not

inconsistent

· A set of wffs, Γ, is maximal iff for every wff φ, either φ or∼φ (or perhaps

both) is a member of Γ

Intuitively: a maximal set is so large that it contains each formula or its negation;

and a consistent set is one from which you can’t prove a contradiction. Note

the following lemmas:

Lemma 2.1 For any set of wffs Γ and wff φ, if φ is provable from Γ then φ is

provable from some �nite subset of Γ. That is, if Γ ` φ then γ1 . . .γn ` φ for

some γ1 . . .γn ∈ Γ (or else `φ)

Proof. If Γ ` φ then there is some proof, A, of φ from Γ. Like every proof,

A is a �nite series of wffs. Thus, only �nitely many of Γ’s members can have

occurred as lines in A. Let γ1 . . .γn be those members of Γ. (If no member of

Γ occurs in A then A proves φ from no premises at all, in which case `φ.) In

addition to counting as a proof of φ from Γ, proof A is also a proof of φ from

{γ1 . . .γn}. Thus, γ1 . . .γn `φ.

Lemma 2.2 For any set of wffs Γ, if Γ ` φ and Γ ` ∼φ for some φ then Γ is

inconsistent

Proof. Follows immediately from ex falso quodlibet (example 2.11) and Cut.

Note that the �rst lemma tells us that a set is inconsistent iff some �nite subset

of that set is inconsistent.

CHAPTER 2. PROPOSITIONAL LOGIC 80

2.9.2 Maximal consistent extensions
Suppose we begin with a consistent set ∆ that isn’t maximal—for at least one

wff φ, ∆ contains neither φ nor ∼φ. Is there some way of adding wffs to ∆ to

make it maximal, without destroying its consistency? That is, is ∆ guaranteed

to have some maximal consistent “extension”? The following theorem tells us

that the answer is yes:

Theorem 2.3 If ∆ is a consistent set of wffs, then there exists some maximal

consistent set of wffs, Γ, such that ∆⊆ Γ

Proof of Theorem 2.3. In outline, we’re going to build up Γ as follows. We’re

going to start by dumping all the formulas in∆ into Γ. Then we will go through

all the wffs, φ1, φ2,…, one at a time. For each wff, we’re going to dump either

it or its negation into Γ, depending on which choice would be consistent. After

we’re done, our set Γ will obviously be maximal; it will obviously contain ∆ as

a subset; and, we’ll show, it will also be consistent.

So, let φ1, φ2,… be a list—an in�nite list, of course—of all the wffs.
10

To

10
We need to be sure that there is some way of arranging all the wffs into such a list. Here is

one method. First, begin with a list of the primitive expressions of the language. In the case of

PL this can be done as follows:

() ∼ → P1 P2 . . .
1 2 3 4 5 6 . . .

(For simplicity, get rid of all the sentence letters except for P1, P2,) Since we’ll need to

refer to what position an expression has in this list, the positions of the expressions are listed

underneath those expressions. (E.g., the position of the → is 4.) Now, where φ is any wff,

call the rating of φ the sum of the positions of the occurrences of its primitive expressions.

(The rating for the wff (P1→P1), for example, is 1+ 5+ 4+ 5+ 2= 17.) We can now construct

the listing of all the wffs of PL by an in�nite series of stages: stage 1, stage 2, etc. In stage

n, we append to our growing list all the wffs of rating n, in alphabetical order. The notion of

alphabetical order here is the usual one, given the ordering of the primitive expressions laid

out above. (E.g., just as ‘and’ comes before ‘dna’ in alphabetical order, since ‘a’ precedes ‘d’

in the usual ordering of the English alphabet, (P1→P2) comes before (P2→P1) in alphabetical

order since P1 comes before P2 in the ordering of the alphabet of PL. Note that each of these

wffs are inserted into the list in stage 18, since each has rating 18.) In stages 1–4 no wffs are

added at all, since every wff must have at least one sentence letter and P1 is the sentence letter

with the smallest position. In stage 5 there is one wff: P1. Thus, the �rst member of our list

of wffs is P1. In stage 6 there is one wff: P2, so P2 is the second member of the list. In every

subsequent stage there are only �nitely many wffs; so each stage adds �nitely many wffs to

the list; each wff gets added at some stage; so each wff eventually gets added after some �nite

amount of time to this list.

CHAPTER 2. PROPOSITIONAL LOGIC 81

construct Γ, our strategy is to start with ∆, and then go through this list one-

by-one, at each point adding either φi or ∼φi . Here’s how we do this more

carefully. We �rst de�ne an in�nite sequence of sets, Γ0,Γ1, . . . :

Γ0 =∆

Γn+1 =

(

Γn ∪{φn+1} if Γn ∪{φn+1} is consistent

Γn ∪{∼φn+1} if Γn ∪{φn+1} is not consistent

This de�nition is recursive, notice. We begin with a noncircular de�nition

of the �rst member of the sequence of sets, Γ0, and after that, we de�ne each

subsequent member Γn+1 in terms of the previous member Γn: we add φn+1 to

Γn if the result of doing so would be consistent; otherwise we add ∼φn+1.

Next let’s prove that each member in this sequence—that is, each Γi —is a

consistent set. We do this inductively, by �rst showing that Γ0 is consistent, and

then showing that if Γn is consistent, then so will be Γn+1. This is a different sort

of inductive proof from what we’ve seen so far, neither an induction on formula

construction nor on formula proof. Nevertheless we have the required structure

for proof by induction: each of the objects of interest (the Γi s) is generated

from a starting point (Γ0) by a �nite series of operations (the operation taking

us from Γn to Γn+1).

Base case: obviously, Γ0 is consistent, since∆was stipulated to be consistent.

Inductive step: we suppose that Γn is consistent (inductive hypothesis), and

then show that Γn+1 is consistent. Look at the de�nition of Γn+1. What Γn+1
gets de�ned as depends on whether Γn ∪ {φn+1} is consistent. If Γn ∪ {φn+1}
is consistent, then Γn+1 gets de�ned as that very set Γn ∪{φn+1}. So of course

Γn+1 is consistent in that case.

The remaining possibility is that Γn ∪ {φn+1} is inconsistent. In that case,

Γn+1 gets de�ned as Γn∪{∼φn+1}. So must show that in this case, Γn∪{∼φn+1}
is consistent. Suppose for reductio that it isn’t. Then ⊥ is provable from

Γn ∪ {∼φn+1}, and so given lemma 2.1 is provable from some �nite subset

of this set; and the �nite subset must contain ∼φn+1 since Γn was consistent.

Letting ψ1 . . .ψm be the remaining members of the �nite subset, we have,

then: ψ1 . . .ψm,∼φn+1 ` ⊥, from which we get ψ1 . . .ψm ` ∼φn+1→⊥ by the

deduction theorem. Since Γn ∪{φn+1} is inconsistent, similar reasoning tells

us that χ1 . . .χp ` φn+1→⊥, for some χ1 . . .χp ∈ Γn. It then follows by “ex-

cluded middle MP” (example 2.11) and Cut that ψ1 . . .ψm,χ1 . . .χp `⊥. Since

ψ1 . . .ψm,χ1 . . .χp are all members of Γn, this contradicts the fact that Γn is

consistent.

CHAPTER 2. PROPOSITIONAL LOGIC 82

We have shown that all the sets in our sequence Γi are consistent. Let

us now de�ne Γ to be the union of all the sets in the in�nite sequence—i.e.,

{φ :φ ∈ Γi for some i}. We must now show that Γ is the set we’re after: that i)

∆⊆ Γ, ii) Γ is maximal, and iii) Γ is consistent.

Any member of ∆ is a member of Γ0 (since Γ0 was de�ned as ∆), hence is a

member of one of the Γi s, and hence is a member of Γ. So ∆⊆ Γ.

Any wff is in the list of all the wffs somewhere—i.e., it is φi for some i . But

by de�nition of Γi , either φi or ∼φi is a member of Γi ; and so one of these is a

member of Γ. Γ is therefore maximal.

Suppose for reductio that Γ is inconsistent. Given lemma 2.1, there exist

ψ1 . . .ψm ∈ Γ such that ψ1 . . .ψm ` ⊥. By de�nition of Γ, each ψi ∈ Γ ji
, for

some ji . Let k be the largest of j1 . . . jm. Given the way the Γ0,Γ1, . . . series is

constructed, each set in the series is a subset of all subsequent ones. Thus, each

of ψ1 . . .ψm is a member of Γk , and thus Γk is inconsistent. But we showed that

each member of the series Γ0,Γ1, . . . is consistent.

2.9.3 Features of maximal consistent sets
Next we’ll establish two facts about maximal consistent sets that we’ll need for

the completeness proof:

Lemma 2.4 Where Γ is any maximal consistent set of wffs:

2.4a for any wff φ, exactly one of φ, ∼φ is a member of Γ

2.4b φ→ψ ∈ Γ iff either φ /∈ Γ or ψ ∈ Γ

Proof of Lemma 2.4a. Since Γ is maximal it must contain at least one of φ or

∼φ. But it cannot contain both; otherwise each would be provable from Γ,

whence by lemma 2.2, Γ would be inconsistent.

Proof of Lemma 2.4b. Suppose �rst that φ→ψ is in Γ, and suppose for reductio

that φ is in Γ but ψ is not. Then we can prove ψ from Γ (begin with φ and

φ→ψ as premises, and then use MP). But since ψ /∈ Γ and Γ is maximal, ∼ψ
is in Γ, and hence is provable from Γ. Given lemma 2.2, this contradicts Γ’s

consistency.

Suppose for the other direction that either φ /∈ Γ or ψ ∈ Γ, and suppose for

reductio that φ→ψ /∈ Γ. Since Γ is maximal, ∼(φ→ψ) ∈ Γ. Then Γ `∼(φ→ψ),
and so by “negated conditional” (example 2.11) and Cut, Γ ` φ and Γ ` ∼ψ.

CHAPTER 2. PROPOSITIONAL LOGIC 83

Now, if φ /∈ Γ then ∼φ ∈ Γ and so Γ `∼φ; and if on the other hand ψ ∈ Γ then

Γ `ψ. Each possibility contradicts Γ’s consistency, given lemma 2.2.

2.9.4 The proof
Now it’s time to put together all the pieces that we’ve assembled.

Proof of PL completeness. Completeness says: if �φ then `φ. We’ll prove this

by proving the equivalent statement: if 0 φ then 2 φ. So, suppose that 0 φ.

We must construct some PL-interpretation in which φ isn’t true.

Since 0φ, {∼φ}must be consistent. For suppose otherwise. Then ∼φ `⊥;

so ` ∼φ→⊥ by the deduction theorem. That is, given the de�nition of ⊥:

`∼φ→∼(P→P). Then by contraposition 1 (example 2.11), ` (P→P)→φ. But

` P→P (exercise 2.4a), and so `φ—contradiction.

Since {∼φ} is consistent, theorem 2.3 tells us that it is a subset of some

maximal consistent set of wffs Γ. Next, let’s use Γ to construct a somewhat odd

PL-interpretation. This PL-interpretation decides whether a sentence letter

is true or false by looking to see whether that sentence letter is a member of Γ.

What we will do next is show that all formulas, not just sentence letters, are

true in this odd interpretation iff they are members of Γ.

So, let I be the PL-interpretation in which for any sentence letter α,

I (α) = 1 iff α ∈ Γ. We must show that:

for every wff φ, VI (φ) = 1 iff φ ∈ Γ (*)

We do this by induction on formula construction. The base case, that the

assertion holds for sentence letters, follows immediately from the de�nition of

I . Next we make the inductive hypothesis (ih): that wffs φ and ψ are true in I
iff they are members of Γ, and we show that the same is true of ∼φ and φ→ψ.

First, ∼φ: we must show that VI (∼φ) = 1 iff ∼φ ∈ Γ:
11

VI (∼φ) = 1 iff VI (φ) = 0 (truth cond. for ∼)

iff φ /∈ Γ (ih)

iff ∼φ ∈ Γ (lemma 2.4a)

11
Here we continue to use the fact that a formula has one truth value iff it lacks the other.

CHAPTER 2. PROPOSITIONAL LOGIC 84

Next,→: we must show that VI (φ→ψ) = 1 iff φ→ψ ∈ Γ:

VI (φ→ψ) = 1 iff either VI (φ) = 0 or VI (ψ) = 1 (truth cond for→)

iff either φ /∈ Γ or ψ ∈ Γ (ih)

iff φ→ψ ∈ Γ (lemma 2.4b)

The inductive proof of (*) is complete. But now, since {∼φ} ⊆ Γ, ∼φ ∈ Γ,

and so by lemma 2.4a, φ /∈ Γ. Thus, by (*), φ is not true in I . So we have

succeeded in constructing an interpretation in which φ isn’t true.

Chapter 6

Propositional Modal Logic

M
odal logic is the logic of necessity and possibility. In it we treat “modal”

words like ‘necessary’, ‘possible’, ‘can’, and ‘must’ as logical constants.

Our new symbols for these words are called “modal operators”:

2φ: “It is necessary that φ” (or: “Necessarily, φ”, “It must be that φ”)

3φ: “It is possible that φ” (or: “Possibly, φ”, “It could be that φ”, “It can be

that φ”, “It might be that φ”, “it might have been that φ”)

It helps to think of modality in terms of possible worlds. A possible world is a

complete and possible scenario. Calling a scenario “possible” means simply that

it’s possible in the broadest sense for the scenario to happen. This requirement

disquali�es scenarios in which, for example, it is both raining and also not

raining (at the same time and place)—such a thing couldn’t happen, and so

doesn’t happen in any possible world. But within this limit, we can imagine all

sorts of possible worlds: possible worlds with talking donkeys, possible worlds

in which I am ten feet tall, and so on. “Complete” means simply that no detail is

left out—possible worlds are completely speci�c scenarios. There is no possible

world in which I am “somewhere between ten and eleven feet tall” without

being some particular height.
1

Likewise, in any possible world in which I am

exactly ten feet, six inches tall (say), I must have some particular weight, must

live in some particular place, and so on. One of these possible worlds is the

actual world—this is the complete and possible scenario that in fact obtains.

1
This is not to say that possible worlds exclude vagueness.

171

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 172

The rest of them are merely possible—they do not obtain, but would have

obtained if things had gone differently. In terms of possible worlds, we can

think of our modal operators thus:

“2φ” is true iff φ is true in all possible worlds

“3φ” is true iff φ is true in at least one possible world

It is necessarily true that all bachelors are male; in every possible world, every

bachelor is male. There might have existed a talking donkey; some possible

world contains a talking donkey.

Possible worlds provide, at the very least, a vivid way to think about necessity

and possibility. How much more they provide is an open philosophical question.

Some maintain that possible worlds are the key to the metaphysics of modality,

that what it is for a proposition to be necessarily true is for it to be true in all

possible worlds.
2

Whether this view is defensible is a question beyond the

scope of this book; what is important for present purposes is that we distinguish

possible worlds as a vivid heuristic from possible worlds as a concern in serious

metaphysics.

Natural language modal words are semantically �exible in a systematic way.

For example, suppose I say that I can’t attend a certain conference in Cleveland.

What is the force of “can’t” here? Probably I’m saying that my attending the

conference is inconsistent with honoring other commitments I’ve made at

that time. But notice that another sentence I might utter is: “I could attend

the conference; but I would have to cancel my class, and I don’t want to do

that.” Now I’ve said that I can attend the conference; have I contradicted my

earlier assertion that I cannot attend the conference? No—what I mean now is

perhaps that I have the means to get to Cleveland on that date. I have shifted

what I mean by “can”.

In fact, there is quite a wide range of things one can mean by words for

possibility:

I can come to the party, but I can’t stay late. (“can” = “is

not inconvenient”)

Humans can travel to the moon, but not Mars. (“can” = “is

achievable with current technology”)

2
Sider (2003) presents an overview of this topic.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 173

It’s possible to move almost as fast as the speed of light, but
not to travel faster than light. (“possible” = “is consistent

with the laws of nature”)

Objects could have traveled faster than the speed of light (if
the laws of nature had been different), but no matter what
the laws had been, nothing could have traveled faster than
itself. (“could” = “metaphysical possibility”)

You may borrow but you may not steal. (“may” = “morally

acceptable”)

It might rain tomorrow (“might” = “epistemic possibil-

ity”)

For any strength of possibility, there is a corresponding strength of necessity,

since “necessarilyφ” is equivalent to “not-possibly-not-φ”. (Similarly, “possibly

φ” is equivalent to “not-necessarily-not-φ”.) So we have a range of strengths

of necessity as well: natural necessity (guaranteed by the laws of nature), moral

or “deontic” necessity (required by morality), epistemic necessity (“known to

be true”) and so on.

Some sorts of necessity imply truth; those that do are called “alethic” neces-

sities. For example, if P is known then P is true; if it is naturally necessary that

massive particles attract one another, then massive particles do in fact attract

one another. Epistemic and natural necessity are alethic. Deontic necessity, on

the other hand, is not alethic; we do not always do what is morally required.

As we saw, we can think of the 2 and the 3 as quanti�ers over possible

worlds (the former a universal quanti�er, the latter an existential quanti�er).

This idea can accommodate the fact that necessity and possibility come in

different strengths: those different strengths result from different restrictions

on the quanti�ers over possible worlds. Thus, natural possibility is truth in

some possible world that obeys the actual world’s laws; deontic possibility is

truth in some possible world in which nothing morally forbidden occurs; and

so on.
3

3
This raises a question, though: to what strength of ‘necessary’ and ‘possible’ does the

notion of possible world itself correspond? Is there some special, strictest notion of necessity,

which can be thought of as truth in absolutely all possible worlds? Or do we simply have

different notions of possible world corresponding to different strengths of necessity?

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 174

6.1 Grammar of MPL
Our �rst topic in modal logic is the addition of the 2 and the 3 to propositional

logic; the result is modal propositional logic (“MPL”). A further step will be modal

predicate logic (chapter 9).

We need a new language: the language of MPL. The grammar of this

language is just like the grammar of propositional logic, except that we add the

2 as a new one-place sentence connective:

Primitive vocabulary:

· Sentence letters: P,Q, R . . . , with or without numerical subscripts

· Connectives: →, ∼, 2

· Parentheses: (,)

Definition of wff:

· Sentence letters are wffs

· If φ and ψ are wffs then (φ→ψ), ∼φ, and 2φ are also wffs

· Only strings that can be shown to be wffs using the preceding clauses are

wffs

The 2 is the only new primitive connective. But just as we were able to

de�ne ∧, ∨, and↔, we can de�ne new nonprimitive modal connectives:

· “3φ” (“Possibly φ”) is short for “∼2∼φ”

· “φJψ” (“φ strictly implies ψ”) is short for “2(φ→ψ)”

6.2 Symbolizations in MPL
Modal logic allows us to symbolize a number of sentences we couldn’t symbolize

before. The most obvious cases are sentences that overtly involve “necessarily”,

“possibly”, or equivalent expressions:

Necessarily, if snow is white, then snow is white or grass

is green

2[S→(S∨G)]

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 175

I’ll go if I must

2G→G

It is possible that Bush will lose the election

3L

Snow might have been either green or blue

3(G∨B)

If snow could have been green, then grass could have

been white

3G→3W

‘Impossible’ and related expressions signify the lack of possibility:

It is impossible for snow to be both white and not white

∼3(W∧∼W)

If grass cannot be clever then snow cannot be furry

∼3C→∼3F

God’s being merciful is inconsistent with your imper-

fection being incompatible with your going to heaven

∼3(M∧∼3(I∧H))

As for the strict conditional, it arguably does a decent job of representing

certain English conditional constructions:

Snow is a necessary condition for skiing

∼WJ∼K

Food and water are required for survival

∼(F∧W)J∼S

Thunder implies lightning

TJL

Once we add modal operators, we can make an important distinction in-

volving modal conditionals in natural language. Consider the sentence “if Jones

is a bachelor, then he must be unmarried”. The surface grammar misleadingly

suggests the symbolization:

B→2U

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 176

But suppose that Jones is in fact a bachelor. It would then follow from this

symbolization that the proposition that Jones is unmarried is necessarily true.

But nothing we have said suggests that Jones is necessarily a bachelor. Surely

Jones could have been married! In fact, one would normally not use the sentence

“if Jones is a bachelor, then he must be unmarried” to mean that if Jones is in fact

a bachelor, then the following is a necessary truth: Jones is unmarried. Rather,

one would mean: necessarily, if Jones is a bachelor then Jones is unmarried:

2(B→U)

It is the relationship between Jones’s being a bachelor and his being unmarried

that is necessary. Think of this in terms of possible worlds: the �rst symboliza-

tion says that if Jones is a bachelor in the actual world, then Jones is unmarried

in every possible world (which is absurd); whereas the second one says that in

each possible world, w, if Jones is a bachelor in w, then Jones is unmarried in
w (which is quite sensible). The distinction between φ→2ψ and 2(φ→ψ) is

called the distinction between the “necessity of the consequent” (�rst sentence)

and the “necessity of the consequence” (second sentence). It is important to

keep the distinction in mind, because of the fact that English surface structure

is misleading.

One �nal point: when representing English sentences using the 2 and

the 3, keep in mind that these expressions can be used to express different

strengths of necessity and possibility. (One could introduce different symbols

for the different sorts; we’ll do a bit of this in chapter 7.)

6.3 Semantics for MPL
As usual, we’ll consider semantics �rst. We’ll show how to construct mathe-

matical con�gurations in a way that’s appropriate to modal logic, and show

how to de�ne truth for formulas of MPL within these con�gurations. Ideally,

we’d like the assignment of truth values to wffs to mirror the way that natural

language modal statements are made true by the real world, so that we can

shed light on the meanings of natural language modal words, and in order to

provide plausible semantic models of the notions of logical truth and logical

consequence.

In constructing a semantics for MPL, we face two main challenges, one

philosophical, the other technical. The philosophical challenge is simply that

it isn’t wholly clear which formulas of MPL are indeed logical truths. It’s hard

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 177

to construct an engine to spit out logical truths if you don’t know which logical

truths you want it to spit out. With a few exceptions, there is widespread

agreement over which formulas of nonmodal propositional and predicate logic

are logical truths. But for modal logic this is less clear, especially for sentences

that contain iterations of modal operators. Is 2P→22P a logical truth? It’s

hard to say.

A quick peek at the history of modal logic is in order. Modal logic arose

from dissatisfaction with the material conditional→ of standard propositional

logic. In standard logic, φ→ψ is true whenever φ is false or ψ is true; but in

expressing the conditionality of ψ on φ, we sometimes want to require a tighter

relationship: we want it not to be a mere accident that either φ is false or ψ
is true. To express this tighter relationship, C. I. Lewis introduced the strict

conditional φJψ, which he de�ned, as above, as 2(φ→ψ).4 Thus de�ned,

φJψ isn’t automatically true just because φ is false or ψ is true. It must be

necessarily true that either φ is false or ψ is true.

Lewis then asked: what principles govern this new symbol 2? Certain

principles seemed clearly appropriate, for instance: 2(φ→ψ)→(2φ→2ψ).
Others were less clear. Is 2φ→22φ a logical truth? What about 32φ→φ?

Lewis’s solution to this problem was not to choose. Instead, he formulated

several different modal systems. He did this axiomatically, by formulating differ-

ent systems that differed from one another by containing different axioms and

hence different theorems.

We will follow Lewis’s approach, and construct several different modal

systems. Unlike Lewis, we’ll do this semantically at �rst (the semantics for

modal logic we will study was published by Saul Kripke in the 1950s, long

after Lewis was writing), by constructing different de�nitions of a model for

modal logic. The de�nitions will differ from one another in ways that result

in different sets of valid formulas. In section 6.4 we’ll study Lewis’s axiomatic

systems, and in sections 6.5 and 6.6 we’ll discuss the relationship between the

semantics and the axiom systems.

Formulating multiple systems does not answer the philosophical question

of which formulas of modal logic are logically true; it merely postpones it.

The question re-arises when we want to apply Lewis’s systems; when we ask

which system is the correct system—i.e., which one correctly mirrors the logical

properties of the English words ‘possibly’ and ‘necessarily’? (Note that since

there are different sorts of necessity and possibility, different systems might

4
See Lewis (1918); Lewis and Langford (1932).

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 178

correctly represent different sorts.) But I’ll mostly ignore such philosophical

questions here.

The technical challenge to constructing a semantics for MPL is that the

modal operators 2 and 3 are not truth functional. A sentential connective is

truth-functional iff whenever it combines with sentences to form a new sentence,

the truth value of the resulting sentence is determined by the truth values of the

component sentences. For example, ‘it is not the case that’ is truth-functional

because the truth value of “it is not the case that φ” is determined by the truth

value of φ. But ‘necessarily’ is not truth-functional. If I tell you that φ is true,

you won’t yet have enough information to determine whether “Necessarily

φ” is true or false, since you won’t know whether φ is necessarily true or

merely contingently true. Here’s another way to put the point: even though

the sentences “If Ted is a philosopher then Ted is a philosopher” and “Ted is a

philosopher” have the same truth value, if you pre�x each with ‘Necessarily’

(intended to mean metaphysical necessity, say), you get sentences with different

truth values. Hence, the truth value of “Necessarily φ” is not a function of

the truth value of φ. Similarly, ‘possibly’ isn’t truth-functional either: ‘I might

have been six feet tall’ is true, whereas ‘I might have been a round square’ is

false, despite the sad fact that ‘I am six feet tall’ and ‘I am a round square’ have

the same truth value.

Since the 2 and the 3 are supposed to represent ‘necessarily’ and ‘possibly’,

and since the latter aren’t truth-functional, we can’t do modal semantics with

truth tables. For the method of truth tables assumes truth-functionality. Truth

tables are just pictures of truth functions: they specify what truth value a

complex sentence has as a function of what truth values its parts have. Our

challenge is clear: we need a semantics for the 2 and the 3 other than the

method of truth tables.

6.3.1 Kripke models
Our approach will be that of possible-worlds semantics. The intuitive idea is to

count 2φ as being true iff φ is true in all possible worlds, and 3φ as being true

iff φ is true in some possible worlds. More carefully: we are going to develop

models for modal propositional logic. These models will contain objects we

will call “possible worlds”. And formulas are going to be true or false “in” (or

“at”) these worlds. That is, we are going to assign truth values to formulas in

these models relative to possible worlds, rather than absolutely. Truth values of

propositional-logic compound formulas—that is, negations and conditionals—

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 179

will be determined by truth tables within each world; ∼φ, for example, will be

true at a world iff φ is false at that world. But the truth value of 2φ at a world

won’t be determined by the truth value of φ at that world; the truth value of φ
at other worlds will also be relevant.

Speci�cally, 2φ will count as true at a world iff φ is true at every world

that is “accessible” from the �rst world. What does “accessible” mean? Each

model will come equipped with a binary relation,R , over the set of possible

worlds; we will say that world v is “accessible from” world w whenRwv . The

intuitive idea is thatRwv if and only if v is possible relative to w. That is, if you

live in world w, then from your perspective, the events in world v are possible.

The idea that what is possible might vary depending on what possible

world you live in might at �rst seem strange, but it isn’t really. “It is physically

impossible to travel faster than the speed of light” is true in the actual world,

but false in worlds where the laws of nature allow faster-than-light travel.

On to the semantics. We �rst de�ne a generic notion of an MPL model,

which we’ll then use to give a semantics for different modal systems:

Definition of model: An MPL-model is an ordered triple, 〈W ,R ,I 〉, where:

· W is a non-empty set of objects (“possible worlds”)

· R is a binary relation overW (“accessibility relation”)

· I is a two-place function that assigns 0 or 1 to each sentence letter,

relative to (“at”, or “in”) each world—that is, for any sentence letter α,

and any w ∈W ,I (α, w) is either 0 or 1. (“interpretation function”)

Each MPL-model contains a setW of possible worlds, and an accessibility

relationR overW . 〈W ,R〉 is sometimes called the model’s frame. Think of

the frame as giving the “structure” of the model’s space of possible worlds: it

says how many worlds there are, and which worlds are accessible from which.

In addition to a frame, each model also contains an interpretation function I ,

which assigns truth values to sentence letters in worlds.

MPL-models are the con�gurations for propositional modal logic (recall

section 2.2). A con�guration is supposed to represent both a way for the

world to be, and also the meanings of nonlogical expressions. In MPL-models,

the former is represented by the frame. (When we say that a con�guration

represents “the world”, we don’t just mean the actual world. “The world”

signi�es, rather, reality, which is here thought of as including the entire space

of possible worlds.) The latter is represented by the interpretation function.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 180

(Recall that in propositional logic, the meaning of a sentence letter was a mere

truth value. The meaning is now richer: a truth value for each possible world.)

A model’s interpretation function assigns truth values only to sentence

letters. But the sum total of all the truth values of sentence letters in worlds,

together with the frame, determines the truth values of all complex wffs, again

relative to worlds. It is the job of the model’s valuation function to specify

exactly how these truth values get determined:

Definition of valuation: WhereM (= 〈W ,R ,I 〉) is any MPL-model, the

valuation forM , VM , is de�ned as the two-place function that assigns either

0 or 1 to each wff relative to each member of W , subject to the following

constraints, where α is any sentence letter, φ and ψ are any wffs, and w is any

member ofW :

VM (α, w) =I (α, w)
VM (∼φ, w) = 1 iff VM (φ, w) = 0

VM (φ→ψ, w) = 1 iff either VM (φ, w) = 0 or VM (ψ, w) = 1
VM (2φ, w) = 1 iff for each v ∈W , ifRwv, then VM (φ, v) = 1

What about truth values for complex formulas containing∧,∨,↔,3, and J?

Given the de�nition of these de�ned connectives in terms of the primitive

connectives, it is easy to prove that the following derived conditions hold:

VM (φ∧ψ, w) = 1 iff VM (φ, w) = 1 and VM (ψ, w) = 1
VM (φ∨ψ, w) = 1 iff VM (φ, w) = 1 or VM (ψ, w) = 1

VM (φ↔ψ, w) = 1 iff VM (φ, w) =VM (ψ, w)
VM (3φ, w) = 1 iff for some v ∈W ,Rwv and VM (φ, v) = 1

VM (φJψ, w) = 1 iff for each v ∈W , ifRwv then either VM (φ, v) = 0 or

VM (ψ, v) = 1

So far, we have introduced a generic notion of an MPL model, and have

de�ned the notion of a wff’s being true at a world in an MPL model. But

remember C. I. Lewis’s plight: it wasn’t clear which modal formulas ought to

count as logical truths. His response, and our response, is to construct different

modal systems, in which different formulas count as logical truths. The systems

we will discuss are named: K, D, T, B, S4, S5. Here in our discussion of

semantics, we will come up with different de�nitions of what counts as a model,

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 181

one for each system: K, D, T, B, S4, S5. As a result, different formulas will

come out valid in the different systems. For example, the formula 2P→22P
is going to come out valid in S4 and S5, but not in the other systems.

The models for the different systems differ according to the formal prop-

erties of their accessibility relations. (Formal properties of relations were

discussed in section 1.8.) For example, we will de�ne a model for system T

(“T-model”) as any MPL model whose accessibility relation is re�exive (inW ,

the set of worlds in that model). Here is the de�nition:

Definition of model for modal systems: An “S-model”, for any of our

systems S, is de�ned as an MPL-model 〈W ,R ,I 〉 whose accessibility relation

R has the formal feature given for system S in the following chart:

System accessibility relation must be
K no requirement

D serial (inW)

T re�exive (inW)

B re�exive (inW) and symmetric

S4 re�exive (inW) and transitive

S5 re�exive (inW), symmetric, and transitive

Thus, any MPL-model counts as a K-model, whereas the requirements for the

other systems are more stringent.

Our next task is to de�ne validity and semantic consequence for the various

systems. A slight wrinkle arises: we can’t just de�ne validity as “truth in all

models”, since formulas aren’t simply true or false in MPL-models; they’re

true or false in various worlds in these models. Instead, we �rst de�ne a notion

of being valid in an MPL model:

Definition of validity in an MPL model: An MPL-wff φ is valid in MPL-

modelM (= 〈W ,R ,I 〉 iff for every w ∈W , VM (φ, w) = 1

Finally we can give the desired de�nitions:

Definition of validity and semantic consequence:

· An MPL-wff is valid in system S (where S is either K, D, T, B, S4, or S5)

iff it is valid in every S-model

· MPL-wff φ is a semantic consequence in system S of set of MPL-wffs

Γ iff for every S-model 〈W ,R ,I 〉 and each w ∈W , if VM (γ , w) = 1 for

each γ ∈ Γ, then VM (φ, w) = 1

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 182

As before, we’ll use the � notation for validity and semantic consequence.

But since we have many modal systems, if we claim that a formula is valid, we’ll

need to indicate which system we’re talking about. Let’s do that by subscripting

� with the name of the system; e.g., “�
T
φ” means that φ is T-valid.

It’s important to get clear on the status of possible-worlds lingo here. Where

〈W ,R ,I 〉 is an MPL-model, we call the members ofW “worlds”, and we call

R the “accessibility” relation. This is certainly a vivid way to talk about these

models. But of�cially, W is nothing but a nonempty set, any old nonempty

set. Its members needn’t be the kinds of things metaphysicians call possible

worlds. They can be numbers, people, bananas—whatever you like. Similarly

forR and I . The former is just de�ned to be any old binary relation onW ;

the latter is just de�ned to be any old function mapping each pair of a sentence

letter and a member ofW to either 1 or 0. Neither needs to have anything to

do with the metaphysics of modality. Of�cially, then, the possible-worlds talk

we use to describe our models is just talk, not heavy-duty metaphysics.

Still, models are usually intended to depict some aspect of the real world.

The usual intention is that wffs get their truth values within models in a parallel

fashion to how natural language sentences are made true by the real world. So

if natural language modal sentences aren’t made true by anything like possible

worlds, then possible worlds semantics would be less valuable than, say, the usual

semantics for nonmodal propositional and predicate logic. To be sure, possible

worlds semantics would still be useful for various purely formal purposes. For

example, given the soundness proofs we will give in section 6.5, the semantics

could still be used to establish facts about unprovability in the axiomatic systems

to be introduced in section 6.4. But it would be hard to see why possible worlds

models would shed any light on the meanings of English modal words, or

why truth-in-all-possible-worlds-models would be a good way of modeling

(genuine) logical truth for modal statements.

On the other hand, if English modal sentences are made true by facts about

possible worlds, then the semantics takes on a greater importance. Perhaps

then we can, for example, decide what the right logic is, for a given strength of

necessity, by re�ecting on the formal properties of the accessibility relation—

the real accessibility relation, over real possible worlds, not the relationR over

the members ofW in our models. Suppose we’re considering some strength,

M , of modality. A (real) possible world v is M -accessible from another world,

w, iff what happens in v counts as being M -possible, from the point of view

of w. Perhaps we can �gure out the logic of M -necessity and M -possibility by

investigating the formal properties of M -accessibility.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 183

Consider deontic necessity and possibility, for example: a proposition is

deontically necessary iff it ought to be the case; a proposition is deontically

possible iff it is morally acceptable that it be the case. The relation of deontic

accessibility seems not to be re�exive: in an imperfect world like our own, many

things that ought not to be true are nevertheless true. Thus, a world can fail to

be deontically accessible relative to itself. (As we will see, this corresponds to

the fact that deontic necessity is non-alethic; it does not imply truth.) On the

other hand, one might argue, deontic accessibility is serial, since surely there

must always be some deontically accessible world—some world in which what

occurs is morally acceptable. (To deny this would be to admit that everything

could be forbidden.) So, perhaps system D gives the logic of deontic necessity

and possibility (see also section 7.1).

To take one other example: some have argued that the relation of metaphysi-
cal-accessibility (the relation relevant to metaphysical necessity and possibility)

is a total relation: every world is metaphysically possible relative to every other.
5

What modal logic would result from requiringR to be a total (inW) relation?

The answer is: S5. That is, you get the same valid formulas whether you require

R to be a total relation or an equivalence relation (see exercise 6.1). So, if the

(real) metaphysical accessibility relation is a total relation, the correct logic for

metaphysical necessity is S5. But others have argued that metaphysical accessi-

bility is intransitive.
6

Perhaps one possible world is metaphysically accessible

from another only if the individuals in the latter world aren’t too different from

how they are in the former world—only if such differences are below a certain

threshold. In that case, it might be argued, a world in which I’m a frog is not

metaphysically accessible from the actual world: any world in which I’m that

drastically different from my actual, human, self, just isn’t metaphysically pos-

sible, relative to actuality. But perhaps a world, w, in which I’m a human-frog

hybrid is accessible from the actual world (the difference between a human

and a frog-human hybrid is below the threshold); and perhaps the frog world

is accessible from w (since the difference between a frog-human hybrid and

a frog is also below the threshold). If so, then metaphysical accessibility is

intransitive. Metaphysical accessibility is clearly re�exive. So perhaps the logic

of metaphysical possibility is given by system B or system T.

5
See Lewis (1986, 246).

6
Compare Salmon (1986).

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 184

Exercise 6.1** Let O be the modal system given by the require-

ment thatR must be total (inW). Show that �
O
φ iff �

S5
φ.

6.3.2 Semantic validity proofs
Given our de�nitions, we can now show particular formulas to be valid in

various systems.

Example 6.1: The wff 2(P∨∼P) is K-valid. To show this, we must show

that the wff is valid in all MPL-models, since validity-in-all-MPL-models is

the de�nition of K-validity. Being valid in a model means being true at every

world in the model. So, consider any MPL-model 〈W ,R ,I 〉, and let w be any

world inW . We must show that VM (2(P∨∼P), w) = 1. (As before, I’ll start to

omit the subscriptM on VM when it’s clear which model we’re talking about.)

i) Suppose for reductio that V(2(P∨∼P), w) = 0

ii) So, by the truth condition for 2 in the de�nition of the valuation function,

there is some world, v, such thatRwv and V(P∨∼P, v) = 0

iii) Given the (derived) truth condition for ∨, V(P, v) = 0 and V(∼P, v) = 0

iv) Since V(∼P, v) = 0, given the truth condition for ∼, V(P, v) = 1. But

that’s impossible; V(P, v) can’t be both 0 and 1.

Thus, �
K

2(P∨∼P).

Note that similar reasoning would establish �
K

2φ, for any tautology φ.

For within any world, the truth values of complex statements of propositional

logic are determined by the truth values of their constituents in that world by

the usual truth tables. So if φ is a tautology, it will be true in any world in any

model; hence 2φ will turn out true in any world in any model.

Example 6.2: Show that �
T
(32(P→Q)∧2P)→3Q. Let w be any world

in any T-modelM ; we must show that VM ((32(P→Q)∧2P)→3Q, w) = 1:

i) Suppose for reductio that V((32(P→Q)∧2P)→3Q, w) = 0.

ii) So V(32(P→Q)∧2P, w) = 1 and …

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 185

iii) …V(3Q, w) = 0. So Q is false in every world accessible from w.

iv) From ii), 32(P→Q) is true at w, and so V(2(P→Q), v) = 1, for some

world, call it v, such thatRwv.

v) From ii), V(2P, w) = 1. So, by the truth condition for the 2, P is true

in every world accessible from w; sinceRwv , it follows that V(P, v) = 1.

But V(Q, v) = 0 given iii). So V(P→Q) = 0.

vi) From iv), P→Q is true in every world accessible from v; sinceM is a

T-model,R is re�exive; soRvv; so V(P→Q, v) = 1, contradicting v).

The last example showed that the formula (32(P→Q)∧2P)→3Q is valid

in T. Suppose we wanted to show that it is also valid in S4. What more would

we have to do? Nothing! To be S4-valid is to be valid in every S4-model. But

a quick look at the de�nitions shows that every S4-model is a T-model. So,

since we already know that the the formula is valid in all T-models, we may

conclude that it must be valid in all S4-models without doing a separate proof:

S4

models

T

models

The S4-models are a subset of the

T-models.

S4

models

T

models

So if a formula is valid in all T-

models, it’s automatically valid in

all S4-models

Think of it another way. A proof that a wff is S4-valid may use the information

that the accessibility relation is both transitive and re�exive. But it doesn’t need

to. So the T-validity proof in example 6.2 also counts as an S4-validity proof.

(It also counts as a B-validity proof and an S5-validity proof.) But it doesn’t

count as a K-validity proof, since it assumes in line vi) thatR is re�exive. To be

K-valid, a wff must be valid in all models, whereas the proof in example 6.2 only

establishes validity in all re�exive models. (In fact (32(P→Q)∧2P)→ 3Q
isn’t K-valid, as we’ll be able to demonstrate shortly.)

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 186

Consider the following diagram of systems:

S5

S4

==||||||
B

``@@@@@@

T

>>~~~~~~

aaBBBBBB

D

OO

K

OO

An arrow from one system to another indicates that validity in the �rst system

implies validity in the second system. For example, all D-valid wffs are also

T-valid. For if a wff is valid in all D-models, then, since every T-model is also a

D-model (re�exivity implies seriality), it must be valid in all T-models as well.

S5 is the strongest system, since it has the most valid formulas. That’s

because it has the fewest models: it’s easy to be S5-valid since there are so

few potentially falsifying models. K is the weakest system—fewest validities—

since it has the most potentially falsifying models. The other systems are

intermediate.

Notice that the diagram isn’t linear. Both B and S4 are stronger than T:

each contains all the T-valid formulas and more besides. And S5 is stronger

than both B and S4. But (as we will see below) neither B nor S4 is stronger

than the other (nor are they equally strong): some B-valid wffs aren’t S4-valid,

and some S4-valid wffs aren’t B-valid. (The de�nitions of B and S4 hint at this.

B requires symmetry but not transitivity, whereas S4 requires transitivity but

not symmetry, so some B-models aren’t S4-models, and some S4-models aren’t

B-models.)

Suppose you’re given a formula, and for each system in which it is valid,

you want to give a semantic proof of its validity. This needn’t require multiple

semantic proofs. As we saw with example 6.2, to prove that a wff is valid in a

number of systems, it suf�ces to give a validity proof in the weakest of those

systems, since that very proof will automatically be a proof that it is valid in

all stronger systems. For example, a K-validity proof is itself a validity proof

for D, T, B, S4, and S5. But there is an exception. Suppose a wff is not valid

in T, but you’ve given a semantic proof of its validity in B. This proof also

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 187

shows that the wff is S5-valid, since every S5-model is a B-model. But you can’t

yet conclude that the wff is S4-valid, since not every S4-model is a B-model.

Another semantic proof may be needed: of the formula’s S4-validity. (Of course,

the formula may not be S4-valid.) So: when a wff is valid in both B and S4, but

not in T, two semantic proofs of its validity are needed.

We are now in a position to do validity proofs. But as we’ll see in the next

section, it’s often easier to do proofs of validity when one has failed to construct

a counter-model for a formula.

Exercise 6.2 Use validity proofs to demonstrate the following:

a) �
D
[2P∧2(∼P∨Q)]→3Q

b) �
S4

33(P∧Q)→3Q

6.3.3 Countermodels
We have a de�nition of validity for the various systems, and we’ve shown how

to establish validity of particular formulas. (We have also de�ned semantic

consequence for these systems, but our focus will be on validity.) Now we’ll see

how to establish invalidity. We establish that a formula is invalid by constructing

a countermodel for it—a model containing a world in which the formula is

false. (Since validity means truth in every world in every model, the existence

of a single countermodel establishes invalidity.)

I’m going to describe a helpful graphical procedure, introduced by Hughes

and Cresswell (1996), for constructing countermodels. Now, it’s always an

option to bypass the graphical procedure and directly intuit what a counter-

model might look like. But the graphical procedure makes things a lot easier,

especially with more complicated formulas.

I’ll illustrate the procedure by using it to show that the wff 3P→2P is not
K-valid. To be K-valid, a wff must be valid in all MPL-models, so all we must

do is �nd one MPL-model in which 3P→2P is false in some world.

Place the formula in a box

We begin by drawing a box, which represents some chosen world in the model

we’re in the process of pictorially constructing. The goal is to make the formula

false in this world. In these examples I’ll always call this �rst world “r”:

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 188

3P→2Pr

Now, since the box represents a world, we should have some way of representing

the accessibility relation. What worlds are accessible from r; what worlds does

r “see”? Well, to represent one world (box) seeing another, we’ll draw an arrow

from the �rst to the second. But in this case we don’t need to draw any arrows.

We’re only trying to show that 3P→2P is K-invalid, and the accessibility

relation for system K doesn’t even need to be serial—no world needs to see any

worlds at all. So, we’ll forget about arrows for the time being.

Make the formula false in the world

We’ll indicate a formula’s truth value by writing that truth value above the

formula’s major connective. (The “major connective” of a wff is the last con-

nective that was added when the wff was formed via the rules of grammar.
7

Thus, the major connective of P→2Q is the→, and the major connective of

2(P→2Q) is the leftmost 2.) So to indicate that 3P→2P is to be false in this

model, we’ll put a 0 above its arrow:

0

3P→2P
r

Enter forced truth values

Assigning a truth value to a formula sometimes forces us to assign truth values

to other formulas in the same world. For example, if we make a conjunction

true in a world then we must make each of its conjuncts true at that world; and

if we make a conditional false at a world, we must make its antecedent true and

its consequent false at that world. In the current example, since we’ve made

3P→2P false in r, we’ve got to make 3P true at r (indicated on the diagram

by a 1 over its major connective, the 3), and we’ve got to make its consequent

2P false at r:

1 0 0

3P→2P
r

7
In talking about major connectives, let’s treat nonprimitive connectives as if they were

primitive. Thus, the major connective of 2P∧∼Q is the ∧.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 189

Enter asterisks

When we assign a truth value to a modal formula, we thereby commit ourselves

to assigning certain other truth values to various formulas at various worlds.

For example, when we make 3P true at r, we commit ourselves to making P
true at some world that r sees. To remind ourselves of this commitment, we’ll

put an asterisk (*) below 3P . An asterisk below indicates a commitment to there

being some world of a certain sort. Similarly, since 2P is false at r, this means

that P must be false in some world P sees (if it were true in all such worlds then

2P would be true at r). We again have a commitment to there being some

world of a certain sort, so we enter an asterisk below 2P as well:

1 0 0

3P→2P
∗ ∗

r

Discharge bottom asterisks

The next step is to ful�ll the commitments we incurred when we added the

bottom asterisks. For each, we need to add a world to the diagram. The �rst

asterisk requires us to add a world in which P is true; the second requires us to

add a world in which P is false. We do this as follows:

1 0 0

3P→2P
∗ ∗

r

����
��

��
��

��

��?
??

??
??

??
?

1
Pa

0
Pb

The of�cial model

We now have a diagram of a K-model containing a world in which 3P→2P
is false. But we need to produce an of�cial model, according to the of�cial

de�nition of a model. A model is an ordered triple 〈W ,R ,I 〉, so we must

specify the model’s three members.

The set of worlds,W , is simply the set of worlds I invoked:

W = {r, a,b}

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 190

What are r, a, and b? Let’s just take them to be the letters ‘r’, ‘a’, and ‘b’. No

reason not to—the members ofW , recall, can be any things whatsoever.

Next, the accessibility relation. This is represented on the diagram by the

arrows. In our model, there is an arrow from r to a, an arrow from r to b, and

no other arrows. Thus, the diagram represents that r sees a, that r sees b, and

that there are no further cases of seeing. Now, remember that the accessibility

relation, like all relations, is a set of ordered pairs. So, we simply write out this

set:

R = {〈r, a〉, 〈r,b〉}

That is, we write out the set of all ordered pairs 〈w1, w2〉 such that w1 “sees”

w2.

Finally, we need to specify the interpretation function, I , which assigns

truth values to sentence letters at worlds. In our model, I must assign 1 to

P at world a, and 0 to P at world b. Now, our of�cial de�nition requires an

interpretation to assign a truth value to each of the in�nitely many sentence

letters at each world; but so long as P is true at world a and false at world b,

it doesn’t matter what other truth values I assigns. So let’s just (arbitrarily)

choose to make all other sentence letters false at all worlds in the model. We

have, then:

I (P, a) = 1
I (P, b) = 0
I (α, w) = 0 for all other sentence letters α and worlds w

That’s it—we’re done. We have produced a model in which 3P→2P is

false at some world; hence this formula is not valid in all models; and hence it’s

not K-valid: 2
K

3P→2P .

Check the model

At the end of this process, it’s a good idea to double-check that your model is

correct. This involves various things. First, make sure that you’ve succeeded in

producing the correct kind of model. For example, if you’re trying to produce

a T-model, make sure that the accessibility relation you’ve written down is

re�exive. (In our case, we were only trying to construct a K-model, and so for

us this step is trivial.) Second, make sure that the formula in question really

does come out false at one of the worlds in your model.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 191

Simplifying models

Sometimes a model can be simpli�ed. In the countermodel for 3P→2P , we

needn’t have used three worlds. We added world a because the truth of 3P
called for a world that r sees in which P is true. But we needn’t have made

that a new world—we could have made P true in r and made r see itself. (We

couldn’t have done that for both asterisks; that would have made P both true

and false at r.) So, we could make this one simpli�cation:

1 1 0 0

3P→2P
∗ ∗

r

��

00

0
Pb

Of�cial model:

W = {r, b}
R = {〈r, r 〉, 〈r, b 〉}

I (P, r) = 1, all others 0

Adapting models to different systems

We have shown that 3P→2P is not K-valid. Next let’s show that this formula

isn’t D-valid—that it is false in some world of some model with a serial accessi-

bility relation. The model we just constructed won’t do, since its accessibility

relation isn’t serial; world b doesn’t see any world. But we can easily change

that:

1 1 0 0

3P→2P
∗ ∗

r

��

00

0
Pb

00

Of�cial model:

W = {r, b}
R = {〈r, r 〉, 〈r, b 〉, 〈b , b 〉}

I (P, r) = 1, all others 0

That was easy—adding the fact that b sees itself didn’t require changing any-

thing else in the model.

Suppose we want now to show that 3P→2P isn’t T-valid. What more

must we do? Nothing! The model we just displayed is a T-model, in addition

to being a D-model, since its accessibility relation is re�exive. In fact, its

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 192

accessibility relation is also transitive, so it’s also an S4-model. What about B?

It’s easy to make the accessibility relation symmetric:

1 1 0 0

3P→2P
∗ ∗

r

OO

��

00

0
Pb

00

Of�cial model:

W = {r, b}
R = {〈r, r〉, 〈r,b〉, 〈b,b〉, 〈b, r〉}

I (P, r) = 1, all others 0

So we’ve established B-invalidity as well. In fact, the model just displayed is

an S5-model since its accessibility relation is an equivalence relation. And so,

since any S5-model is also a K, D, T, B, and S4-model, this one model shows

that 3P→2P is not valid in any of our systems. So we have established that:

2
K,D,T,B,S4,S5

3P→2P .

In this case it wouldn’t have been hard to move straight to the �nal S5-

model, right from the start. But in more dif�cult cases, it’s best to proceed

slowly, as I did here. Try �rst for a countermodel in K. Then build the model

up gradually, trying to make its accessibility relation satisfy the requirements of

stronger systems. When you get a countermodel in a stronger system (a system

with more requirements on its models), that very countermodel will establish

invalidity in all weaker systems. Keep in mind the diagram of systems:

S5

S4

==||||||
B

``@@@@@@

T

>>~~~~~~

aaBBBBBB

D

OO

K

OO

An arrow from one system to another, recall, indicates that validity in the �rst

system implies validity in the second. The arrows also indicate facts about

invalidity, but in reverse: when an arrow points from one system to another,

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 193

then invalidity in the second system implies invalidity in the �rst. For example,

if a wff is invalid in T, then it is invalid in D. (That’s because every T-model is

a D-model; a countermodel in T is therefore a countermodel in D.)

When our task is to discover the systems in which a given formula is invalid,

usually only one countermodel will be needed—a countermodel in the strongest

system in which the formula is invalid. But there is an exception involving B

and S4. Suppose a given formula is valid in S5, but we discover a model showing

that it isn’t valid in B. That model is automatically a T, D, and K-model, so

we know that the formula isn’t T, D, or K-valid. But we don’t yet know about

S4-validity. If the formula is S4-invalid, then we will need to produce a second

countermodel, an S4 countermodel. (Notice that the B-model couldn’t already
be an S4-model. If it were, then its accessibility relation would be re�exive,

symmetric, and transitive, and so it would be an S5-model, contradicting the

fact that the formula was S5-valid.)

So far we have the following steps for constructing countermodels:

1. Place the formula in a box and make it false

2. Enter forced truth values

3. Enter asterisks

4. Discharge bottom asterisks

5. The of�cial model

We need to add to this list.

Top asterisks

Let’s try to get a countermodel for 32P→23P in all the systems in which it

is invalid. A cautious beginning would be to try for a K-model. After the �rst

few steps, we have:

1 0 0

32P→23P
∗ ∗

r

}}{{
{{

{{
{{

{{
{

!!CC
CC

CC
CC

CC
C

1

2P
a

0

3Pb

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 194

At this point we have a true 2 (in world a) and a false 3 (in world b). Like

true 3s and false 2s, these generate commitments pertaining to other worlds.

But unlike true 3s and false 2s, they don’t commit us to the existence of some
accessible world of a certain type; they carry commitments for every accessible

world. The true 2P in world a, for example, requires us to make P true in every

world accessible from a. Similarly, the falsity of 3P in world b commits us to

making P false in every world accessible from b. We indicate such commitments,

universal rather than existential, by putting asterisks above the relevant modal

operators:

1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��@
@@

@@
@@

@@
@@

@

∗
1

2P
a

∗
0

3P
b

Now, how can we honor these commitments; how must we “discharge” these

asterisks? In this case, when trying to construct a K-model, we don’t need to do

anything. Since world a, for example, doesn’t see any world, P is automatically

true in every world it sees; the statement “for every world, w, if Raw then

V(P, w) = 1” is vacuously true. Same goes for b—P is automatically false in all

worlds it sees. So, we’ve got a K-model in which 32P→23P is false.

Now let’s turn the model into a D-model. Every world must now see at

least one world. Let’s try:

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 195

1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��@
@@

@@
@@

@@
@@

@

∗
1

2P
a

��

∗
0

3P
b

��
1

P
c

00

0

Pd

00

I added worlds c and d, so that a and b would each see at least one world.

(Further, worlds c and d each had to see a world, to keep the relation serial. I

could have added new worlds e and f seen by c and d, but e and f would have

needed to see some worlds. So I just let c and d see themselves.) But once c

and d were added, discharging the upper asterisks in worlds a and b required

making P true in c and false in d (since a sees c and b sees d).

Let’s now try for a T-model. Worlds a and b must now see themselves. But

then we no longer need worlds c and d, since they were added just to make the

relation serial. So we can simplify:

1 0 0

32P→23P
∗ ∗

r

��~~
~~

~~
~~

~~
~~

��

00

∗
1 1

2P
a

00

∗
0 0

3P
b

00

Of�cial model:

W = {r,a,b}
R = {〈r, r〉, 〈a, a〉, 〈b,b〉, 〈r, a〉, 〈r,b〉}

I (P, a) = 1, all others 0

When you add arrows, you need to make sure that all top asterisks are dis-

charged. In this case this required nothing of world r, since there were no top

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 196

asterisks there. There were top asterisks in worlds a and b; these I discharged

by making P be true in a and false in b.

Notice that I could have moved straight to this T-model—which is itself a

D-model—rather than �rst going through the earlier mere D-model. However,

this won’t always be possible—sometimes you’ll be able to get a D-model, but

no T-model.

At this point let’s verify that our model does indeed assign the value 0 to

our formula 32P→23P . First notice that 2P is true in a (since a only sees

one world—itself—and P is true there). But r sees a. So 32P is true at r. Now,

consider b. b sees only one world, itself; and P is false there. So 3P must also

be false there. But r sees b. So 23P is false at r. But now, the antecedent of

32P→23P is true, while its consequent is false, at r. So that conditional is

false at r. Which is what we wanted.

Onward. Our model is not a B-model since r sees a and b but they don’t

see r back. Suppose we try to make a and b see r:

1 0 0

32P→23P
∗ ∗

r

??

��~~
~~

~~
~~

~~
~~

__

��@
@@

@@
@@

@@
@@

@00

∗
1 1

2P
a

00

∗
0 0

3P
b

00

We must now make sure that all top asterisks are discharged. Since a now sees

r, P must be true at r. But b sees r too, so P must be false at r. Since P can’t be

both true and false at r, we’re stuck. We have failed to construct a B-model in

which this formula is false.

Our failure to construct a B-countermodel suggests that it may be impossible

to do so. We can prove that this is impossible by showing that the formula is

true in every world of every B-model—that is, that the formula is B-valid. Let

M = 〈W ,R ,I 〉 be any model in which R is re�exive and symmetric, and

consider any w ∈W ; we must show that VM (32P→23P, w) = 1:

i) Suppose for reductio that V(32P→23P, w) = 0. Then V(32P, w) = 1
and V(23P, w) = 0.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 197

ii) Given the former, for some v,Rwv and V(2P, v) = 1.

iii) Given the latter, for some u,Rw u and V(3P, u) = 0.

iv) From ii), P is true at every world accessible from v ; by symmetry,Rvw;

so V(P, w) = 1.

v) From iii), P is false at every world accessible from u; by symmetry,Ruw;

so V(P, w) = 0, contradicting iv)

Just as we suspected: the formula is indeed B-valid; no wonder we failed to

come up with a B-countermodel!

Might there be an S5 countermodel? No: the B-validity proof we just

constructed also shows that the formula is S5-valid. What about an S4 coun-

termodel? The existence of the B-validity proof doesn’t tell us one way or the

other. Remember the diagram: validity in S4 doesn’t imply validity in B, nor

does validity in B imply validity in S4. So we must either try to come up with

an S4-model, or try to construct an S4 semantic validity proof. Usually it’s best

to try for a model. In the present case this is easy: the T-model we gave earlier

is itself an S4-model. Thus, on the basis of that model, we can conclude that

2
K,D,T,S4

32P→23P .

We have accomplished our task. We gave an S4 countermodel, which is a

countermodel for each system in which 32P→23P is invalid. And we gave

a validity proof in B, which is a validity proof for each system in which the

formula is valid.

Example 6.3: Determine in which systems 32P→3232P is valid and in

which systems it is invalid. We can get a T-model as follows:

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 198

∗
1 0 0 0

32P→3232P
∗ ∗

r

00

��

��

I discharged the second

bottom asterisk in

r by letting r see b

∗
1 1 0

2P 232P
∗

a

00

��

Notice how commitments

to truth values for different

formulas are recorded

by placing the formulas

side by side in the box

∗
0 0 1

32P P
∗

b

00

��
0

P
c

00

Of�cial model:

W = {r,a, b , c}
R = {〈r, r 〉, 〈a,a〉, 〈b , b 〉, 〈c , c〉, 〈r,a〉, 〈r, b 〉, 〈a, b 〉, 〈b , c〉}

I (P,a) =I (P,b)= 1, all others 0

Now consider what happens when we try to turn this model into a B-model.

World b must see back to world a. But then the false 32P in b con�icts with

the true 2P in a. So it’s time for a validity proof. In constructing this validity

proof, we can be guided by our failed attempt to construct a countermodel

(assuming all of our choices in constructing that countermodel were forced).

In the following proof that the formula is B-valid, I use variables for worlds

that match up with the attempted countermodel above:

i) Suppose for reductio that V(32P→3232P, r) = 0, in some world r in

some B-model 〈W ,R ,I 〉. So V(32P, r) = 1 and V(3232P, r) = 0.

CHAPTER 6. PROPOSITIONAL MODAL LOGIC 199

ii) Given the former, for some world a,R ra and V(2P,a) = 1.

iii) Given the latter, sinceR ra, V(232P,a) = 0. So for some b ,Rab and

V(32P, b) = 0. By symmetry,Rba; so V(2P,a) = 0, contradicting ii).

We now have a T-model for the formula, and a proof that it is B-valid. The

B-validity proof shows the formula to be S5-valid; the T-model shows it to be

K- and D-invalid. We don’t yet know about S4. So let’s return to the T-model

above and try to make its accessibility relation transitive. World a must then

see world c, which is impossible since 2P is true in a and P is false in c. So

we’re ready for a S4-validity proof (the proof looks like the B-validity proof at

�rst, but then diverges):

i) Suppose for reductio that V(32P→3232P, r) = 0, in some world r in

some B-model 〈W ,R ,I 〉. So V(32P, r) = 1 and V(3232P, r) = 0.

ii) Given the former, for some world a,R ra and V(2P,a) = 1.

iii) Given the latter, sinceR ra, V(232P,a) = 0. So for some b ,Rab and

V(32P, b) = 0. By re�exivity,Rb b , so V(2P, b) = 0. So for some world

c ,Rb c and V(P, c) = 0.

iv) SinceRab andRb c , by transitivity we haveRac . So, given ii), V(P, c) =
1, contradicting iii)

Daggers

If we make a conditional false, we’re forced to enter certain truth values for its

components: 1 for the antecedent, 0 for the consequent. Similarly, making a

conjunction true forces us to make its conjuncts true, making a disjunction false

forces us to make its disjuncts false, and making a negation either true or false

forces us to give the negated formula the opposite truth value. But consider

making a disjunction true. Here we have a choice; we can make either disjunct

true (or both). We similarly have a choice for how to make a conditional true,

or a conjunction false, or a biconditional either true or false.

When one faces choices like these, it’s best to delay making the choice

as long as possible. After all, some other part of the model might force you

to make one choice rather than the other. If you investigate the rest of the

countermodel, and nothing has forced your hand, you may need then to make

	lfp
	Preface
	What is Logic?
	Logical consequence and logical truth
	Formalization
	Metalogic
	Exercises 1.1–1.2
	Application
	The nature of logical consequence
	Exercise 1.3
	Logical constants
	Extensions, deviations, variations
	Set theory
	Exercises 1.4–1.5

	Propositional Logic
	Grammar of PL
	The semantic approach to logic
	Semantics of PL
	Exercise 2.1
	Validity and invalidity in PL
	Exercise 2.2
	Schemas, validity, and invalidity

	Sequent proofs in PL
	Sequents
	Rules
	Sequent proofs
	Example sequent proofs
	Exercise 2.3

	Axiomatic proofs in PL
	Exercise 2.4
	Soundness of PL and proof by induction
	Exercises 2.5–2.10
	PL-proofs and the deduction theorem
	Exercises 2.11–2.12
	Completeness of PL
	Maximal consistent sets of wffs
	Maximal consistent extensions
	Features of maximal consistent sets
	The proof

	Beyond Standard Propositional Logic
	Alternate connectives
	Symbolizing truth functions in PL
	Sheffer stroke
	Inadequate connective sets
	Exercises 3.1–3.3

	Polish notation
	Exercise 3.4
	Nonclassical propositional logics
	Three-valued logic
	Łukasiewicz's system
	Exercises 3.5–3.6
	Kleene's tables
	Exercises 3.7–3.9
	Determinacy
	Priest's logic of paradox
	Exercises 3.10–3.11
	Supervaluationism
	Exercises 3.12–3.16

	Intuitionistic propositional logic: proof theory
	Exercise 3.17

	Predicate Logic
	Grammar of PC
	Semantics of PC
	Exercise 4.1
	Establishing validity and invalidity in PC
	Exercises 4.2–4.3
	Axiomatic proofs in PC
	Exercise 4.4
	Metalogic of PC
	Exercise 4.5

	Beyond Standard Predicate Logic
	Identity
	Grammar for the identity sign
	Semantics for the identity sign
	Symbolizations with the identity sign
	Exercises 5.1–5.2

	Function symbols
	Exercise 5.3
	Grammar for function symbols
	Semantics for function symbols
	Exercise 5.4

	Definite descriptions
	Grammar for
	Semantics for
	Exercises 5.5–5.6
	Elimination of function symbols and descriptions
	Exercises 5.7–5.8

	Further quantifiers
	Generalized monadic quantifiers
	Exercise 5.9
	Generalized binary quantifiers
	Exercise 5.10
	Second-order logic
	Exercise 5.11

	Complex predicates
	Exercises 5.12–5.13
	Free logic
	Semantics for free logic
	Exercises 5.14–5.15
	Proof theory for free logic

	Modal Propositional Logic
	Grammar of MPL
	Symbolizations in MPL
	Semantics for MPL
	Kripke models
	Exercise 6.1
	Establishing validity in MPL
	Exercise 6.2
	Establishing invalidity in MPL
	Exercise 6.3

	Axiomatic systems of MPL
	System K
	Exercises 6.4–6.5
	System D
	Exercise 6.6
	System T
	Exercise 6.7
	System B
	Exercise 6.8
	System S4
	Exercise 6.9
	System S5
	Exercise 6.10
	Substitution of equivalents and modal reduction
	Exercise 6.11

	Soundness in MPL
	Exercises 6.12–6.13
	Soundness of K
	Soundness of T
	Soundness of B
	Exercises 6.14–6.15

	Completeness in MPL
	Definition of canonical models
	Facts about maximal consistent sets
	Exercise 6.16
	``Mesh''
	Exercise 6.17
	Truth and membership in canonical models
	Completeness of systems of MPL
	Exercises 6.18–6.20

	Beyond Standard Modal Propositional Logic
	Deontic logic
	Exercises 7.1–7.2
	Epistemic logic
	Exercise 7.3
	Propositional tense logic
	The metaphysics of time
	Tense operators
	Possible-worlds semantics for tense logic
	Exercises 7.4–7.5
	Formal constraints on
	Exercise 7.6

	Intuitionistic propositional logic: semantics
	Proof stages
	Exercises 7.7–7.8
	Validity and semantic consequence
	Exercises 7.9–7.10
	Soundness
	Exercises 7.11–7.13

	Counterfactuals
	Natural-language counterfactuals
	Antecedents and consequents
	Can be contingent
	No augmentation
	No contraposition
	Some implications
	Context dependence

	The Lewis–Stalnaker theory
	Stalnaker's system (SC)
	Syntax of SC
	Semantics of SC
	Exercise 8.1

	Establishing validity in SC
	Exercise 8.2
	Establishing invalidity in SC
	Exercises 8.3–8.4
	Logical features of SC
	No exportation
	No importation
	No permutation
	No transitivity

	Lewis's criticisms of Stalnaker's theory
	Lewis's system
	Exercises 8.5–8.6
	The problem of disjunctive antecedents
	Counterfactuals as strict conditionals

	Quantified Modal Logic
	Grammar of QML
	De re and de dicto
	A simple semantics for QML
	Establishing validity and invalidity in SQML
	Exercise 9.1
	Philosophical questions about SQML
	The necessity of identity
	The necessity of existence
	Exercise 9.2
	Necessary existence defended?

	Variable domains
	Contingent existence vindicated
	Exercises 9.3–9.4
	Increasing, decreasing domains
	Exercise 9.5
	Strong and weak necessity
	Actualist and possibilist quantification

	Axiomatic proofs in SQML
	Exercise 9.6

	Two-dimensional Modal Logic
	Actuality
	Kripke models with designated worlds
	Exercise 10.1
	Semantics for @
	Establishing validity and invalidity

	
	Two-dimensional semantics for
	Exercise 10.2

	Fixedly
	Exercises 10.3–10.5
	Necessity and apriority
	Exercises 10.6–10.9

	Answers and Hints
	References
	Index

	lfp_sample
	Preface
	What is Logic?
	Logical consequence and logical truth
	Formalization
	Metalogic
	Exercises 1.1--1.2
	Application
	The nature of logical consequence
	Exercise 1.3
	Logical constants
	Extensions, deviations, variations
	Set theory
	Exercises 1.4--1.5

	Propositional Logic
	Grammar of PL
	The semantic approach to logic
	Semantics of propositional logic
	Exercise 2.1
	Validity and invalidity in PL
	Exercise 2.2
	Schemas, validity, and invalidity

	Sequent proofs in PL
	Sequents
	Rules
	Sequent proofs
	Example sequent proofs
	Exercise 2.3

	Axiomatic proofs in PL
	Exercise 2.4
	Soundness of PL and proof by induction
	Exercises 2.5--2.10
	PL proofs and the deduction theorem
	Exercises 2.11--2.12
	Completeness of PL
	Maximal consistent sets of wffs
	Maximal consistent extensions
	Features of maximal consistent sets
	The proof

	Beyond Standard Propositional Logic
	Alternate connectives
	Symbolizing truth functions in propositional logic
	Sheffer stroke
	Inadequate connective sets
	Exercises 3.1--3.3

	Polish notation
	Exercise 3.4
	Nonclassical propositional logics
	Three-valued logic
	Lukasiewicz's system
	Exercises 3.5--3.6
	Kleene's tables
	Exercises 3.7--3.9
	Determinacy
	Priest's logic of paradox
	Exercises 3.10--3.11
	Supervaluationism
	Exercises 3.12--3.16

	Intuitionistic propositional logic: proof theory
	Exercise 3.17

	Predicate Logic
	Grammar of predicate logic
	Semantics of predicate logic
	Exercise 4.1
	Establishing validity and invalidity
	Exercises 4.2--4.3
	Axiomatic proofs in PC
	Exercise 4.4
	Metalogic of PC
	Exercise 4.5

	Beyond Standard Predicate Logic
	Identity
	Grammar for the identity sign
	Semantics for the identity sign
	Symbolizations with the identity sign
	Exercises 5.1--5.2

	Function symbols
	Exercise 5.3
	Grammar for function symbols
	Semantics for function symbols
	Exercise 5.4

	Definite descriptions
	Grammar for
	Semantics for
	Exercises 5.5--5.6
	Elimination of function symbols and descriptions
	Exercises 5.7--5.8

	Further quantifiers
	Generalized monadic quantifiers
	Exercise 5.9
	Generalized binary quantifiers
	Exercise 5.10
	Second-order logic
	Exercise 5.11

	Complex Predicates
	Exercises 5.12--5.13
	Free Logic
	Semantics for free logic
	Exercises 5.14--5.15
	Proof theory for free logic

	Propositional Modal Logic
	Grammar of MPL
	Symbolizations in MPL
	Semantics for MPL
	Kripke models
	Exercise 6.1
	Semantic validity proofs
	Exercise 6.2
	Countermodels
	Exercise 6.3

	Axiomatic systems of MPL
	System K
	Exercises 6.4--6.5
	System D
	Exercise 6.6
	System T
	Exercise 6.7
	System B
	Exercise 6.8
	System S4
	Exercise 6.9
	System S5
	Exercise 6.10
	Substitution of equivalents and modal reduction
	Exercise 6.11

	Soundness in MPL
	Exercises 6.12--6.13
	Soundness of K
	Soundness of T
	Soundness of B
	Exercises 6.14--6.15

	Completeness in MPL
	Definition of canonical models
	Facts about maximal consistent sets
	Exercise 6.16
	``Mesh''
	Exercise 6.17
	Truth and membership in canonical models
	Completeness of systems of MPL
	Exercises 6.18--6.20

	Beyond Standard MPL
	Deontic logic
	Exercises 7.1--7.2
	Epistemic logic
	Exercise 7.3
	Propositional tense logic
	The metaphysics of time
	Tense operators
	Kripke-style semantics for tense logic
	Exercises 7.4--7.5
	Formal constraints on
	Exercise 7.6

	Intuitionistic propositional logic: semantics
	Proof stages
	Exercises 7.7--7.8
	Examples
	Exercises 7.9--7.10
	Soundness
	Exercises 7.11--7.13

	Counterfactuals
	Natural language counterfactuals
	Antecedents and consequents
	Can be contingent
	No augmentation
	No contraposition
	Some implications
	Context dependence

	The Lewis/Stalnaker theory
	Stalnaker's system (SC)
	Syntax of SC
	Semantics of SC
	Exercise 8.1

	Validity proofs in SC
	Exercise 8.2
	Countermodels in SC
	Exercises 8.3--8.4
	Logical Features of SC
	No exportation
	No importation
	No transitivity
	No transposition

	Lewis's criticisms of Stalnaker's theory
	Lewis's system
	Exercises 8.5--8.6
	The problem of disjunctive antecedents

	Quantified Modal Logic
	Grammar of QML
	De re and de dicto
	A simple semantics for QML
	Countermodels and validity proofs in SQML
	Exercise 9.1
	Philosophical questions about SQML
	The necessity of identity
	The necessity of existence
	Exercise 9.2
	Necessary existence defended

	Variable domains
	Contingent existence vindicated
	Exercises 9.3--9.4
	Increasing, decreasing domains
	Exercise 9.5
	Strong and weak necessity
	Actualist and possibilist quantification

	Axioms for SQML
	Exercise 9.6

	Two-dimensional modal logic
	Actuality
	Kripke models with designated worlds
	Exercise 10.1
	Semantics for @
	Establishing validity and invalidity

	
	Two-dimensional semantics for
	Exercise 10.2

	Fixedly
	Exercises 10.3--10.5
	Necessity and a priority
	Exercises 10.6--10.9

	Answers and Hints
	References
	Index

