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This note is to show that a well-known point about David Lewis’s (1986)
modal realism applies to Timothy Williamson’s (1998; 2002) theory of nec-
essary existents as well.1 Each theory, together with certain “recombination”
principles, generates individuals too numerous to form a set.

The simplest version of the argument comes from Daniel Nolan (1996).2

Assume the following recombination principle: for each cardinal number, ν, it’s
possible that there exist ν nonsets. Then given Lewis’s modal realism it follows
that there can be no set of all (that is, Absolutely All) the nonsets. For suppose
for reductio that there were such a set, A; let ν be A’s cardinality; and let µ
be any cardinal number larger than ν. By the recombination principle, it’s
possible that there exist µ nonsets; by modal realism, there exists a possible
world containing, as parts, µ nonsets; each of these nonsets is a member of A;
so A’s cardinality cannot have been ν.

On some conceptions of what sets are, Lewis could simply accept this
conclusion. But given the iterative conception of set,3 it seems that there must
exist a set of all nonsets.4 According to the iterative conception, sets are “built
up” in a series of “stages”. At the �rst stage a set is “formed” whose members are
all and only the nonsets. At subsequent stages, sets are formed whose members
are sets from earlier stages. The sets, on this conception, are all and only those
that are formed at some stage or other. Since a set of all the nonsets is formed
at the very �rst stage, such a set must exist.

My main concern here is not to defend this argument, only to show how an
analogous argument against Williamson may be constructed. Still, it’s worth
noting that the recombination principle on which the argument is premised has
a solid intuitive basis. Under the broad sense of ‘possible’ at issue, there should
be no arbitrary limits to what’s possible; but any limit to how many nonsets
are possible would be arbitrary. It would be strange to say that there could

∗Thanks to Karen Bennett, Phillip Bricker, Mike Fara, Stephan Leuenberger, Daniel Nolan,
Jeff Russell, Jason Turner, Tim Williamson, and an anonymous referee.

1Parsons (1994); Linsky and Zalta (1994, 1996) defend somewhat similar views.
2The original idea, in somewhat different form, is from Forrest and Armstrong (1984), and

is discussed by Lewis (1986, section 2.2).
3See Boolos 1971.
4See Lewis 1986, p. 104. Nolan rejects this point.
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be up to 30,000 electrons, but no more. Or that there could be a countable
in�nity of electrons, but not an uncountable in�nity. Or continuum-many,
but not some higher in�nite number. And so on. Williamson is of course
free to put the brakes on this reasoning in some way. And unlike Lewis, who
explicitly endorses (a restricted version of) recombination (1986, section 1.8),
Williamson has no particular commitment to recombination. But nor does
he have any particular reason to reject it (beyond the present argument); and
recombination has general appeal.

Now for the analogous argument that threatens Williamson. Very roughly
put: since Williamson accepts the Barcan formula, he thinks that everything
that can exist, does exist. So any nonset that can exist, does exist. So if there is
no limit to how many nonsets can exist, then there is no limit to how many do
in fact exist.

The existence of the analogous argument is hardly surprising since both
Lewis and Williamson embrace the crucial assumption that “everything that
can exist, does exist”. But Nolan’s original argument was formulated extension-
ally, from an “amodal” perspective on Lewis’s pluriverse, so to speak. This is
indeed the appropriate way to formulate the argument in Lewis’s case, given
Lewis’s reduction of modal facts to extensional facts about the pluriverse; but
Williamson’s opposition to this reduction is well-known. The analogous argu-
ment in Williamson’s case must be formulated in terms congenial to Williamson:
namely, in a modal language. And it must be done more rigorously than in the
preceding paragraph. In fact it’s not completely trivial to do this; and as we
will see, certain auxiliary modal premises will be required. So I think it’s worth
working out this argument’s details. In what follows I’ll do this in two ways.

The �rst employs an in�nitary modal language, speci�cally, one that allows
both arbitrarily long in�nitary conjunctions and quanti�cation of arbitrarily
many variables.5 Notation: where X is a (perhaps in�nite) set of variables and
φ is a (perhaps in�nitary) formula, let

∑

Xφ be the existential quanti�cation
of φ with respect to the variables in X (thus,

∑

Xφ is true iff φ is true for
some values of the variables in X .) And, where Γ is a (perhaps in�nite) set of
formulas, let
∧

Γ be the conjunction of the formulas in Γ (thus,
∧

Γ is true iff
every member of Γ is true.)

In this language we may formulate the recombination principle as the
following schema, where ‘S x’ means “x is a set” and the schematic variable X
may be replaced by any set of variables (of any cardinality):

5See Dickmann 1975 on in�nitary languages.
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Recombination 3
∑

X
∧

{ð∼S x∧x 6=yñ : x, y distinct variables in X }

An instance of the Recombination schema, where ν is the cardinality of X , says
that there could have existed ν distinct nonsets. (Informally, it can be thought
of as looking like this:

3∃x1∃x2 . . .
︸ ︷︷ ︸

ν quanti�ers

(∼S x1∧x1 6=x2∧x1 6=x3∧· · ·∧∼S x2∧x2 6=x3∧x2 6=x4∧· · · )

although this representation is a bit misleading since ν need not be countable.)
There is such an instance for each in�nite cardinality ν ; therefore, the schema’s
instances collectively have the same upshot as the original recombination
principle.

The core of Williamson’s theory of necessary existents is his acceptance
of the Barcan schema ∀x2φ→2∀xφ, or, equivalently, 3∃xφ→∃x3φ. The
latter has an in�nitary analog, to which, I take it, Williamson is committed:

In�nitary Barcan schema 3
∑

Xφ→
∑

X 3φ

(where X may be replaced by any set of variables and φ by any—perhaps
in�nitary—formula.)

The argument from the in�nitary Barcan and Recombination schemas
to the conclusion that there can be no set of all nonsets will require some
auxiliary assumptions. While they are not strictly required by his theory of
necessary existents, Williamson would, I take it, be happy to assume them.6

First, the logic assumed by the argument will be: S5 propositional modal
logic, plus uncontroversial modal predicate logic, plus the converse of the
�nitary Barcan schema: 2∀xφ→∀x2φ. More carefully, since the familiar S5
and modal predicate logic systems are �nitary: the argument will employ the
obvious in�nitary analogs of inferences endorsed by these logics, in addition to
the more familiar �nitary inferences. Second, the argument will assume the
following premises:7

6See Williamson 1996, and Williamson 1998: sections 3 and 7 on modal logic and p. 266
on the essentiality of sethood. I intend a purely modal reading of ‘essentially’. Parsons (1994,
10, and note 5) contemplates the rejection of the essentiality of sethood.

7Tim Williamson pointed out that the argument could use the weaker propositional modal
system B rather than S5 if the premises were strengthened to: the necessitations of the essen-
tiality of sethood and the necessity of identity (22∀x(S x→2S x) and 22∀x∀y(x=y→2x=y)).
Instead of the S5 theorem schema NE, the argument would use the B theorem schema
22(χ→2χ ) → 2(∼χ→2∼χ ) in the derivation of the essentiality of nonsethood and the
necessity of distinctness.
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Essentiality of sethood 2∀x(S x→2S x)

Necessity of identity 2∀x∀y(x=y→2x=y)

A preliminary step is to move from the essentiality of sethood and the
necessity of identity to:

Essentiality of nonsethood 2∀x(∼S x→2∼S x)

Necessity of distinctness 2∀x∀y(x 6=y→2x 6=y)

We do this as follows. Every instance of the following is an S5 theorem:

NE 2(χ→2χ )→2(∼χ→2∼χ )

So in particular, the following two open formulas are theorems:

a) 2(S x→2S x)→2(∼S x→2∼S x)

b) 2(x=y→2x=y)→2(x 6=y→2x 6=y)

But whenever 2φ→2ψ is a theorem, we may move to 2∀xφ→2∀xψ as fol-
lows:

1. 2φ→2ψ

2. ∀x(2φ→2ψ) 1, universal generalization
3. ∀x2φ→∀x2ψ 2, predicate logic
4. ∀x2φ→2∀xψ 3, Barcan schema
5. 2∀xφ→2∀xψ 4, converse Barcan schema

Thus from a) and b) we may move to the essentiality of nonsethood and the
necessity of distinctness.

The main argument now runs as follows. Suppose for reductio that there
is a set of all nonsets; let ν be its cardinality. Let X be a set of variables with
cardinality greater than ν. An instance of Recombination is then:

(1) 3
∑

X
∧

{ð∼S x∧x 6=yñ : x, y distinct variables in X }

By the essentiality of nonsethood and the necessity of distinctness, (1) implies:

(2) 3
∑

X
∧

{ð2∼S x∧2x 6=yñ : x, y distinct variables in X }
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(the reasoning here is the in�nitary analog of the inference from 2∀x(φ1→ψ1)
and 2∀x(φ2→ψ2) and 3∃x(φ1∧φ2) to 3∃x(ψ1∧ψ2), which is valid in any rea-
sonable modal predicate logic.) From (2), via an instance of the in�nitary
Barcan schema, we obtain:

(3)
∑

X 3
∧

{ð2∼S x∧2x 6=yñ : x, y distinct variables in X }

By more basic modal predicate logic (the in�nitary analog of ∃x3(φ∧ψ) `
∃x(3φ∧3ψ)) we get:

(4)
∑

X
∧

{ð32∼S x∧32x 6=yñ : x, y distinct variables in X }

And, �nally, by the in�nitary analog of ∃x(32φ∧32ψ) ` ∃x(φ∧ψ) (which in
turn relies on the S5-valid 32χ ` χ ), (4) implies:

(5)
∑

X
∧

{ð∼S x∧x 6=yñ : x, y distinct variables in X }

Since X contains more than ν variables, the truth of (5) implies that there are
more than ν nonsets, which contradicts our reductio assumption that there was
a set of all nonsets with cardinality ν.

A second way to run the argument dispenses with the in�nitary language
but requires a further—though quite natural—auxiliary premise about set
membership:

∈-rigidity 2∀x∀y(x ∈ y→2x ∈ y)

Let L be a �rst-order modal language, with∼,→, 2, ∀, and= the primitive
logical constants, and whose nonlogical vocabulary consists solely of the predi-
cates ∈ and S , for set membership and sethood, respectively. We �rst establish
the following by induction:8

General Rigidity For any formula, φ, of L and any assignment,
g , to L’s variables, 2(φ→2φ) is true under g

8If we were using B propositional modal logic rather than S5 (see note 7), in order to
make the inductive proof work we would need to formulate General Rigidity as the claim that
2n(φ→2φ) is true for each positive integer n, where 2n is 2 . . .2

︸ ︷︷ ︸

n 2s

. Accordingly, the argument’s

premises would need to be strengthened to include, for each n, 2n(the essentiality of sethood)
and 2n(the necessity of distinctness). Thanks again to Tim Williamson.
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The base case—that the assertion holds for atomic formulas—follows im-
mediately from the necessity of identity, the essentiality of sethood, and ∈-
rigidity. Assuming next that the assertion holds for φ and ψ (the inductive
hypothesis, “ih”), it must be shown that 2(∼φ→2∼φ), 2((φ→ψ)→2(φ→ψ)),
2(2φ→22φ), and 2(∀xφ→2∀xφ) are all true under any assignment g :

• Given ih, 2(φ→2φ) is true under g ; this formula implies 2(∼φ→2∼φ)
(by NE); the latter is therefore true under g .9

• Given ih, 2(φ→2φ) and 2(ψ→2ψ) are true under g . These two for-
mulas imply 2((φ→ψ)→2(φ→ψ)):

1. 2(φ→2φ)
2. 2(ψ→2ψ)
3. 2(∼φ→2∼φ) 1, NE
4. 2((∼φ∨ψ)→ (2∼φ∨2ψ)) 2,3
5. 2((φ→ψ)→2(φ→ψ)) 4

The latter is therefore also true under g .

• 2(2φ→22φ) is S5-valid, and so is true under g .10

• Let o be any object. By ih we know that 2(φ→2φ) is true under g o
x

(the assignment just like g except that it assigns o to x). o was arbitrarily
chosen, so 2(φ→2φ) is true under g o

x for every o. ∀x2(φ→2φ) is
therefore true under g . But ∀x2(φ→2φ) implies 2(∀xφ→2∀xφ):

1. ∀x2(φ→2φ)
2. 2∀x(φ→2φ) 1, Barcan schema
3. 2(∀xφ→∀x2φ) 2
4. 2(∀xφ→2∀xφ) 3, Barcan schema

So, since the former is true under g , the latter is as well.

9I assume throughout that consequence in the logic being assumed preserves truth under
any variable assignment.

10If we were doing this in B (notes 7, 8), what we would need to show here is 2n(2φ→22φ).
But this follows in any normal modal logic from 22n(φ→2φ), which the ih would give us.
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Next, let the variables A and B range over sets;11 let NS(α) abbreviate
∀z(z ∈ α→∼S z) (“α is a set of (only) nonsets”); and let α ≺ β mean “the
cardinality of α is lower than the cardinality of β” (this can be de�ned in the
language of set theory and hence in L). The recombination principle in the
present context can be stated as:

(6) ∀A3∃B(NS(B)∧A≺ B)

Only assuming ∈-rigidity is this an appropriate statement of the recombination
principle. (6) says that for every actual set, A, no matter what its cardinality,
it would have been possible for there to exist a set B of nonsets with a greater
cardinality than set A would then have had—B is not guaranteed to exceed A’s
actual cardinality if A might have had different members from what it actually
has. Without ∈-rigidity (or a related assumption, such as the assumption of ∈-
rigidity for pure sets), the recombination principle might not be appropriately
stateable in L.

Suppose, then, that (6) is true, and assume for reductio that there is a set
of all the nonsets. So, letting ANS(α) abbreviate ∀z(∼S z→z ∈ α) (“α is a set
containing all the nonsets”), the following formula is true:

(7) ∃A ANS(A)

Since (6) and (7) imply the following, it too is true:

(8) ∃A[ANS(A)∧3∃B(NS(B)∧A≺ B)]

Since (8) is true, it is true under some assignment to the variables, g . So, for
some o, the following is true under g o

A:

(9) ANS(A)∧3∃B(NS(B)∧A≺ B)

By general rigidity, the following is true under g o
A:

(10) 2[∃B(NS(B)∧A≺ B)→2∃B(NS(B)∧A≺ B)]

(9) and (10) imply ANS(A)∧32∃B(NS(B)∧A≺ B) by basic quanti�ed modal
logic, which in turn implies (given S5):

11Of�cially: let “∀A” abbreviate “∀x(S x→”, let “∃B” abbreviate “∃y(Sy∧”, etc.
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(11) ANS(A)∧∃B(NS(B)∧A≺ B)

So, since (9) and (10) are true under g o
A, (11) is as well. The following is

therefore true under g , and so is true simpliciter:

(12) ∃A[ANS(A)∧∃B(NS(B)∧A≺ B)]

But (12) is a falsehood of set theory: if A contains all nonsets and B contains
only nonsets, B ⊆A; but then B cannot have a greater cardinality than A. The
reductio assumption is therefore false.

Each version of the argument concludes that there is no set of all the nonsets.
Like Lewis, Williamson is free to accept this conclusion, provided he rejects the
iterative conception of set. Indeed, he might argue that the iterative conception
is in trouble for independent reasons.12 He might, for instance, argue that there
exists a distinct property for each thing, x, even when x is a set (the property
of being identical to x, perhaps). Assuming that properties are not sets, it then
follows that there cannot be a set of all the nonsets, in apparent violation of
the iterative conception. But suppose the iterative conception’s �rst stage is
modi�ed to posit only the existence of a set of all those things that are neither
sets nor properties. Better, suppose that we can identify a category of “iterative”
entities, entities that are “iteratively constructed” alongside the sets: properties,
propositions, and so on; and let the iterative conception’s �rst stage be modi�ed
to posit only the existence of a set of all the noniterative things. Provided we can
make as much sense out of the iterative construction of properties (propositions,
etc.) as we can make of the iterative construction of sets, the modi�cation is
not ad hoc, for the idea behind the iterative conception of set was that, when it
comes to iterative entities in general, such entities exist only if they show up
at some stage in the iterative construction. The argument can then be recast
with ‘iterative’ replacing ‘set’ throughout, and it looks to retain its strength. In
particular, the essentiality of sethood becomes the claim that any iterative entity
is necessarily iterative, which looks strong: sets are essentially sets, properties
are essentially properties, propositions are essentially propositions, and so on.13

12Thanks to Tim Williamson here. Also, Stewart Shapiro (2003, section 3) has argued
that Williamson’s commitments on other fronts (absolutely unrestricted quanti�cation and
inde�nite extensibility) prohibit the existence of a set of all nonsets.

13I should stress that I have not tried to argue in favor of the iterative conception. For all I
have said, Williamson could simply reject it, or could insist on some form that does not require
the existence of a set of nonsets (or noniterative entities). My aim has simply been to extend
the recombination argument to Williamson’s theory, not to defend that argument.
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Another way out would be to reject the essentiality of sethood. And after all,
Williamson’s theory of necessary existents leads him to reject other essentialist
principles. On his view, although human beings exist necessarily, they are not
essentially human since each human being could have lacked spatiotemporal lo-
cation. Similarly, cats could have been nonspatiotemporal and hence could have
failed to be cats, chairs could have been nonspatiotemporal and hence could
have failed to be chairs, and so on. So on Williamson’s view, for sortal predicates
F , F s are generally not essentially F s. However, these anti-essentialist claims
of Williamson’s all derive from a common source: his claim that spatiotemporal
objects could have failed to be spatiotemporal. And this common source does
not stand in the way of the claim that sets are essentially sets (or the claim
that properties are essentially properties, etc.) So nothing in Williamson’s view
stands in the way of his accepting this piece of orthodoxy.
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