Math Logic

Homework \#3a Chapter 6

Chapter 6

Note: In designing abacus machines, please use numbers to denote the registers, not letters. For example, if you want to increment a certain register, say " $1+$ " instead of "a+". Use the first registers $(1,2, \ldots)$ to hold the inputs, and give the output in the very next register.

1. Give a flow chart for an abacus that computes !, the factorial function. ([1]! $\rightarrow 2$)

$$
\begin{aligned}
& 0!=1 \\
& \mathrm{n}!=1 \cdot 2 \cdot \ldots \cdot(\mathrm{n}-1) \cdot \mathrm{n}
\end{aligned}
$$

2. Give a flow chart for an abacus that computes superexponentiation (see p. 60). (sup([1],[2]) $\rightarrow 3$).
3. Define a 1-place function of non-negative integers, by diagonalization, that is not abacuscomputable. To do this you must produce an enumeration of the abacus machines -- I don't want you to appeal to facts proved in the book (e.g., the fact that every abacus computable function is Turing-computable).
