Math Logic
Homework \#7 (Chapters 14 and 15)

1. Prove
(*) For any (closed) term, t , in the language of arithmetic, there is a unique number, i, such that $\vdash_{Q} t=\mathbf{i}$

Hint: use strong induction on the number of function symbols occurring in t.
2. Prove the following:

Let ϕ be any quantifier-free sentence in the language of arithmetic that is true in the standard model. Show that ϕ is a theorem of Q .

The lemmas proved in chapter 14 should be helpful, as well as $\left(^{*}\right)$ from problem \# 1.
Hint: it will be easier if you prove the following assertion (by strong induction on the number of connectives):

Where ϕ is any quantifier-free sentence in the language of arithmetic containing only the boolean connectives \sim and $\&$,
i) if ϕ is true in the standard model then $\vdash_{\mathrm{Q}} \phi$, AND
ii) if ϕ is not true in the standard model then $\vdash_{Q^{\sim}} \sim \phi$

The desired result follows from this, since every boolean connective can be defined in terms of \sim and $\&$.
3. Show that the assignment of numbers to expressions given on p .171 is indeed a gödelnumbering, in the sense defined on p .170 . To do this you'll need to describe a procedure for taking a given number and deciding whether it is the gödel-number of any expression, and if so, which expression that is. Describe this procedure in English (i.e., don't give me a Turing machine or anything like that -- just give the idea of how the procedure would go.)

