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1. The idea of spatial structure

In the philosophy of physics, one of the central questions about space is: what
is its “structure”?

For the purposes of our discussion, let’s assume that “substantivalism” about
space is true. That is, as Newton thought, there are these entities, points
of space. They stand in various spatial relationships to one another, and are
occupied by material bodies. (Material bodies only stand in spatial relations
derivatively, by virtue of the spatial relations between the points they occupy.)
The question of the structure of space is roughly what the spatial relationships
between points are like. (According to a rival view, “relationalism”, there are no
points in space; there are only, as Leibniz thought, material bodies which stand
in spatial relationships to one another; and the question of the structure of
“space” is then instead that of what these spatial relationships between material
bodies are like. Much of our discussion here will carry over to that point of
view.)

To introduce the idea of the “structure” of space, let’s begin by talking about
“left” and “right”. Everyone knows that left and right are “relative”. Which
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direction counts as left, or right, depends on which direction one is facing.
There is no thing as “absolute” or “intrinsic” left and right, built into space
itself. The notion of absolute left (as opposed to left relative to an orientation)
is “not well-de�ned”. It would be crazy to think that inherent in the nature of
space itself is a single direction, “true left”, so that there is a question of which
direction is “truly left”, irrespective of which direction one is facing.

Now, it isn’t as if it is utterly incoherent to hold that space has a distinguished
direction, call it L.1 That is, it wouldn’t be incoherent to claim that it is part
of the inherent structure of space that “not all directions are created equally”,
but rather that there is a distinguished direction. On such a view, space itself
shouldn’t be pictured like this:

x

z

y

1Although it isn’t incoherent to suppose space has a distinguished direction, maybe it is
incoherent to suppose that such a direction could count as being left, given what we ordinarily
mean by ‘left’.
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But rather like this:

x

z

y

(We’ll talk more later about what it means, metaphysically, to say that space
has one sort of structure as opposed to another; here I’m just introducing this
idea intuitively.)

What might be an example of a feature of space that is built in? Well, the
diagrams I’ve been using implicitly suggest, with their regular placement of
points on the grid, and the three perpendicular coordinate axes, that there are
built-in features of distance—that, for example, if you take four points of space,
a, b , c , and d , there will be an objective, absolute, intrinsic-to-space fact of the
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matter whether a and b are exactly as far apart as are c and d :

x

z

y

a b

c

d

It is a natural view that distances (or anyway, something like distances) are
indeed built into space. However, this isn’t uncontroversial; and it has been
denied, for example by Reichenbach (1958, chapter 1).

So: the question of the structure of space is, in large part, the question of
what spatial features are “intrinsic” or “absolute” or “built into space itself”, as
opposed to somehow being relative to facts about things in space (such as the
orientation of an observer, in the case of left and right).

2. Laws and spatial structure

According to many, there is a connection between the question of which spatial
features are absolute (intrinsic, inherent, etc.) and the laws of nature.2 Suppose
someone claimed that there was a law of nature saying that “all negatively

2See Earman (1989); Friedman (1983); Maudlin (2012); North (2021).
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charged particles travel to the left”. Of course, such a law is absurd. But it
isn’t absurd solely because it’s empirically inadequate. It doesn’t even make
sense. Left and right are relative, after all; so how does a given negatively
charged particle “know” which way to go? In order for a law to make sense,
any geometrical notions it employs need to “make sense” in a nonrelative way.

What law of this sort would make sense, given that space is, in fact, isotropic—
i.e., that it lacks a distinguished direction? For one, a law saying “all negatively
charged particles travel in the same direction”. Here’s another. Suppose each
electron was a spatially extended sphere, with a dot at one point that always
moves parallel to the direction of motion of the center of mass of the electron.
Then a law saying “all negatively charged particles turn 90 degrees left, with
respect to the orientation de�ned by their current state of motion and their
dot, every ten seconds” would make sense.3

For a more physically realistic example, consider Newton’s �rst law of motion,
which states that an object that isn’t acted on by forces continues in its state
of motion, whether at rest, or moving with uniform speed in a straight line.
This law refers to two geometric notions: being at rest, and moving in a straight
line (note that each involves time as well as space). Thus, according to the
assumption we are discussing, Newton’s �rst law could be a genuine law of
nature only if being at rest, and moving in a straight line, are both built into
the structure of space and time.4

3. Kinds of spatial structure

Next I want to talk about different kinds of spatial structure. These come in
“levels”, in a sense that will become clear. A full treatment of all of this would
require a lot of mathematics, but the basic ideas can be conveyed informally.

The “lowest” or “simplest” level of structure is that given by the number of
points: how many of them there are. Suppose a space had just this level of
structure. It shouldn’t then be pictured as in my diagrams above, since the
points wouldn’t have any particular spatial arrangement. Actually it’s hard to

3Well, contrary to Kant, there may well be no distinguished notion of left-relative-to-an-
orientation (that is, space may not be inherently “chiral”), in which case the stated law wouldn’t
make sense. However, the following would make sense: “every negatively charged particle turns,
every ten seconds, in the same-handed direction as every other”.

4See Maudlin (2012, chapter 1) for a full discussion this and related issues.
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picture such a space at all, though perhaps we can do it like this:

A “bag of points”

Such a “space” isn’t really a space in any interesting at all, because it has no
spatial structure. It’s a “mere set”; a mere “bag of points”. (Indeed, we might
call this level of structure “set-theoretic”.)

The next level of structure is “topological”. Topological structure has to do
with notions like continuity:

continuous curve

noncontinuous curve

The top curve is continuous because (roughly speaking) you could draw it
without lifting your pen. The bottom isn’t.
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Notice that continuity doesn’t have anything to do with size or shape or straight-
ness.

A space that is merely topological would have i) a set of points (and thus a
de�nite number of points), and ii) a speci�cation of which sets of those points
count as continuous curves. (Actually the usual basic notion is open set.) But
there wouldn’t be any well-de�ned notion of what shape a given curve has.
Whether it is “really” straight, whether it “really” has any sharp turns, how
far apart its endpoints “really” are—all these simply wouldn’t be well-de�ned
questions. They would be like asking, of our actual physical space, whether a
given direction is really left. To illustrate, these two �gures are topologically
the same:

Each is a “closed” continuous curve. Of course, the �gures don’t look the same,
but that’s because we are visually sensitive to much more than topology: we
perceive distances, angles, sharp points, etc.

The next level of structure is differentiable structure. Differentiable structure
consists, not only of topological structure, but also of a speci�cation of which
curves are smooth, as opposed to having corners. In the preceding diagram,
the two �gures don’t have the same differentiable structure, because the right
hand �gure has two “corners”. But if those were smoothed out, then the �gures
would have the same differentiable structure—straightness and size aren’t �xed
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by differentiable structure.

The next sort of structure, af�ne structure, speci�es in addition which continu-
ous curves are straight. These two �gures have the same differential but not
af�ne structure since only the right �gure has straight lines:

But af�ne structure still doesn’t include distances;5 relatedly, it doesn’t contain
information about the angles between lines. These two �gures have the same
af�ne structure:

Finally we have metric structure, in which distances (and angles) are now built
into the structure of the space. In the most familiar sort of space that has a metric,
you can move a �gure anywhere you like, and rotate it, without changing its
intrinsic features. That’s because such a space is homogeneous (no distinguished
locations) and isotropic (no distinguished directions). But you can’t resize a
�gure, let alone bend or straighten or smoothen it, etc.

These various kinds of structure come in a hierarchy, in the sense that higher
levels, intuitively, build on lower levels. To get af�ne structure, for instance, you
start with topological (or differentiable) structure and specify more structure:
which continuous (or smooth) curves are to count as straight.

5That’s not quite right, actually; distances along parallel lines can be compared. That’s why
I rotated the parallelogram in the next �gure.
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4. The metaphysics of spatial structure

We have been speaking of structure that is “built into” space. But what does that
mean, metaphysically speaking? This is an interesting and dif�cult question.

To appreciate why it’s dif�cult, recall the bag of points:

In the bag, I said, there are no facts about continuity, straightness, distance,
etc.; these notions are not “well-de�ned”. However, there are functions from
pairs of points in the topological space to real numbers that formally behave
like distance functions, i.e., which satisfy these constraints:

d (p, q)≥ 0
d (p, q) = 0 iff p = q
d (p, q) = d (q , p)

d (p, q)+ d (q , r )≥ d (p, r ) (triangle inequality)

For consider some metric space that has exactly as many points as are in the
bag; let D be its distance function. Since the metric space has the same number
of points as the bag, there exists some one-to-one function, f , from points in
the bag to points in the metric space. (This is the standard de�nition of two
sets having the same number of members.) We can then use f to pick out a
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“copy”, in the bag, of the function D . Since D satis�es the constraints, the copy
function will be guaranteed to satisfy the constraints as well. The copy function,
D f, can be de�ned as follows:

D f(x, y) =D
�

f (x), f (y)
�

(for any points x and y in the bag)

For instance, in the following diagram, the “copy distance” (i.e., distance in the
sense of D f) between points a and b in the bag is 1, because that is D-distance
between the points f (a) and f (b ) in the metric space to which a and b are
mapped by f :

x

z

f (a) f (b )

D distance = 1

Some metric space

b

a

D f distance = 1

What one wants to say is that the function D f isn’t “built into” the structure
of the bag of points, but rather needed to be imposed from the outside. But
although we used the metric space to pick out D f, it’s a perfectly good function
(mapping from pairs of points in the bag to numbers), and we don’t need to
think of it as “making reference to” the metric space. We could just think of
this function as a set of ordered pairs which are composed of members of the

bag and numbers:
n




〈a, b 〉, 1
�

, . . .
o

.

One might try saying that D f doesn’t really establish facts about distance in
the bag because of the fact that there are many other functions from pairs of
points in the bag to numbers that formally behave like distance functions. For
example, if we picked any other one-to-one function f ′ from the bag onto the
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metric space, we could construct a different corresponding function D f ′. But
although this thought is somewhat on the right track, it won’t do as stated. For
even in the metric space, which really does have “built-in distance facts”, there
are many functions other than D that formally behave like distance functions.
For any one-to-one function g from the metric space onto the metric space,
we can construct a corresponding function D g that also formally behaves like
a distance function (if D satis�es the four constraints then so will D g). These
other functions D g clearly are not the “built-in” distance functions. (They will,
in general, differ greatly from D in what they say—and not just by a change in
unit of measure. They will treat different pairs of points as being congruent to
one another, they will assign different ratios of distances, etc.) So the mere fact
that a function with the right formal properties, such as D f , is accompanied by
other such functions isn’t what disquali�es that function from being a “built-in
distance function”.

So what does disqualify D f?

4.1 Metaphysically in�ationary conception

Here is a metaphysically in�ationary answer. (I say this without prejudice; I
myself think this answer is correct.) D f is disquali�ed because it is not a natural
kind. D , on the other hand, is a natural kind.

This answer rests on a realist metaphysics of natural kinds. According to this
metaphysics, properties, relations, etc., can be divided into two groups: the
natural kinds, like green, blue, and D, say, on one hand, and the non-natural
kinds, like Goodman’s (1955) “grue” and “bleen”, and D f on the other.

(A lot more could be said, both about realism about natural kinds in general,
and also about its application to the present case.6 Because D involves numbers,
I would actually prefer not to regard D itself as a natural kind, but would rather
regard as natural kinds certain properties and relations that would allow us to
prove representation theorems that establish the existence and uniqueness of
functions like D .7)

There is a sense in which realism about natural kinds is playing the role here of
a label on a problem rather than a solution. Suppose one is a primitivist about

6For a quick introduction, see Sider (2024); for a fuller survey see Dorr (2019).
7See Sider (2011a) for an introduction to these issues.
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natural kinds, in the sense that one isn’t giving any further de�nition of what
the natural kinds are. Calling D a natural kind and D f not a natural kind is
then close to just saying that D is part of the built-in structure of the metric
space and D f isn’t part of the built-in structure of the bag. Put another way, the
answer “D f isn’t a natural kind” shouldn’t be seen as more of an intellectual
advance on “D f isn’t built-in” than it really is. In particular, we aren’t making
sense of the idea of “built-in” in wholly other terms. The intellectual advance,
such as it is, lies elsewhere: it is embedding the notion of natural kind into an
overarching and hopefully explanatory theory.

4.2 Coordinatization conception

Here is a very different way to think about spatial structure: the built-in fea-
tures of a space are those that are invariant amongst the space’s admissible
coordinatizations.8

To explain this approach, let’s begin by explaining what “coordinatizations” are.
A coordinatization of a space is simply an assignment of certain mathematical
objects to points in the space—that is, a function, f , that maps each point p in
the space to a mathematical object f (p), which we think of as p’s coordinate
under f . Cartesian coordinates are a familiar example: a Cartesian coordina-
tization of a two-dimensional space is a function that assigns an ordered pair
〈x, y〉 of real numbers to each point in the space.

(It’s important to distinguish between the space and the coordinates. The
“spaces” we are talking about here are collections of physical points, whereas
the coordinates are mathematical objects. Confusingly, it’s common to also
refer to the set of coordinates—for instance, the set of all ordered pairs of
real numbers—as being a “space”. We can disambiguate by calling sets of
coordinates “mathematical spaces”, and sets of physical points “physical spaces”.
By ‘space’ here I mean physical space.)

Coordinatizations are not unique; a given space will have many coordinatiza-
tions. Returning to the example of Cartesian coordinates: it is arbitrary where
we put the origin. That is, it is arbitrary which point in the space is assigned the
coordinate 〈0,0〉. It’s also arbitrary which directions in the space the x and y
axes point in. That is: in any coordinatization, the x-axis is the set of points with

8See Wallace (2019, 2022). This approach—and perhaps also certain intermediate
approaches—are common within philosophy of physics.
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coordinates of the form 〈x, 0〉 (x varies over all the real numbers); the y-axis is
the set of points with coordinates of the form 〈0, y〉 (y varies); and it’s arbitrary
in which direction these axes point. Thus there are different coordinatizations
that make these arbitrary choices differently.

The next notion to be introduced is that of an admissible coordinatization. An
admissible coordinatization is a coordinatization that, intuitively, adequately
re�ects the intrinsic structure of the space. For example, consider a one-
dimensional metric space. For such a space, the coordinates will be individual
real numbers. However, not every function that assigns a real number to
each point in the space will appropriately capture the intrinsic facts about the
space. For instance, where p, q , and r are three “equally spaced” points (q is
halfway between p and r ), a coordinatization that assigns the coordinates 1, 2,
and 17 to p, q , and r wouldn’t accurately re�ect the distance facts—it would
represent p and q as being closer together than q and r —and so we call such a
coordinatization inadmissible. To count as admissible (for this one-dimensional
metric space), a coordinatization must assign “equally spaced real numbers” to
p, q , and r , such as 1, 2, and 3, or 997, 998, and 999.

We can now state the approach:

Any space is associated with a set of admissible coordinatizations;
and these admissible coordinatizations, taken together as a group,
characterizes the intrinsic structure of the space.

What does “associated with” mean? What determines what the range of admis-
sible coordinatizations is? We’ll talk about this question more later, but here
is the idea: we don’t give some further, “metaphysically deeper”, account of
what the intrinsic structure of the space is, from which we can derive the set of
admissible coordinatizations. Instead, we say simply that the intrinsic nature of
the space determines what its admissible coordinatizations are, and leave it at
that.9 And in order to describe the intrinsic structure of a space, we say what its
admissible coordinatizations are, and leave it at that. (The claim is not that the
set of admissible coordinatizations is somehow metaphysically basic. The spirit
of this second approach is to reject the need for giving a metaphysically basic
account of spatial structure—and indeed, perhaps to reject talk of metaphysical

9A further wrinkle is that the intrinsic nature of the space only selects what the admissible
coordinatizations are once we have made certain conventional decisions of representation, such
as what kinds of mathematical entities we are using to represent points.
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basicness altogether.)

Let’s illustrate this approach using the example of a one-dimensional metric
space. The structure of this space is given by the set of its admissible coordina-
tizations. That is, for any intrinsic feature of the space, it is possible to “read
off” that feature by inspecting the totality of admissible coordinatizations. A
simple example of this is the space’s dimensionality: the fact that the space is
one-dimensional can be read off of the fact that each admissible coordinatiza-
tion is a function that assigns a single real number (rather than, say, an ordered
pair or an ordered triple of real numbers) to each point. Another example is the
fact that our points p, q , and r are equally spaced: this can be read off of the
fact that each admissible coordinatization assigns to p, q , and r three “evenly
spaced real numbers” (that is, numbers, x, y, and z, with y between x and z,
such that |x − y|= |y − z |).

Both similarities and differences between admissible coordinatizations play a role
in giving the intrinsic features of a space. To illustrate, let’s continue with the
one-dimensional space. As I claimed in the previous paragraph, each admissible
coordinatization assigns evenly-spaced real numbers to p, q , and r . This is a
similarity between admissible coordinatizations, and it corresponds to the fact
that the spatial even-spacing of p, q , and r is an intrinsic feature of the space.
More generally, any two coordinatizations are similar in that they assign the
same numerical distances to all pairs of points (that is, the absolute value of
the difference between the coordinates of any pair of points is the same); this
corresponds to the fact that (physical) distances between points is an intrinsic
feature of the space. On the other hand, different coordinatizations will assign
different numbers to these points—one assigns the number 0 to p, another
assigns 997 to p, and so on. This is a difference between coordinatizations, and it
corresponds to the fact that a “distinguished location” is not part of the intrinsic
feature of the space. That is, there is no “distinguished origin”—different
coordinatizations assign the coordinate 0 to different points. Another example
of a difference between coordinatizations is this: whereas one coordinatization
assigns increasing values to the points p, q , and r , namely 1, 2, and 3, other
coordinatizations assign decreasing values to those points (albeit always equally-
spaced coordinates), such as 3, 2, and 1, or 500, 499, and 498. This corresponds to
the fact that a “distinguished direction” is not part of the structure of the space;
the space is isotropic. These similarities and differences can be summarized as
follows. Let f be any admissible coordinatization; then, any function g from
points to real numbers is admissible if and only if it is just like f except that i)
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the origin may have moved, and ii) the points may be mirror-imaged—that is,
if and only if there is some real number, b , such that g is related to f by one of
the following equations:

g (p) = f (p)+ b (for any point p)
g (p) =− f (p)+ b (for any point p)

(b corresponds to a shift in coordinates, and whether the second or �rst equa-
tion relates g to f corresponds to whether g is a re�ection of f .) This sum-
mary corresponds to a very general fact about the intrinsic structure of the
one-dimensional metric space, namely that—to put it roughly—the “built-in”
features of the space are exactly the totality of distances between points. For the
functions g related to f by one of the two equations above are exactly those
functions that assign the very same inter-point distances as f .

Let’s take another example: consider a one-dimensional space that has merely
topological structure.10 The coordinatizations again assign individual real
numbers to points. Suppose, as before, we have a coordinatization that assigns
the numbers 1,2,3 as the coordinates to three points p, q , r . Earlier, the fact that
1,2,3 were evenly spaced numbers was representationally signi�cant: it re�ected
the fact that the points p, q , r were evenly spaced. But here in the topological
space, “evenly spaced” isn’t a well-de�ned notion. How is this accounted for, in
the present approach? By the fact that there are also other coordinatizations in
which the coordinates assigned to p, q , r are not evenly spaced. E.g., there will
be an admissible coordinatization in which the coordinates are 1,2,57. However,
there won’t be any admissible coordinatizations in which the coordinates of
p, q , r are 7,2,10. For the �rst coordinatization represents q as being between
p and r ; and betweeness is indeed a topologically signi�cant notion (in a one-
dimensional space); so every admissible coordinatization must represent q as
being between p and r . In general, you can move from one coordinatization
to another by “stretching” coordinates, but you can’t change the order or
introduce gaps in coordinates.

Next let’s show how to give a precise de�nition of the locution ‘property P is
intrinsic to space 〈S,C 〉’, where S is a set of points and C a set of admissible

10Dimensionality, in fact, is indeed a topologically well-de�ned feature. That is, it’s possible—
though highly nontrivial—to give a de�nition, using only topological notions, of how many
dimensions a set of points has.
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coordinatizations.11 First de�ne the notion of an automorphism:

An automorphism of 〈S,C 〉 is a one-to-one function φ from S to itself
such that for some f , g ∈C , φ(p) = f −1

�

g (p)
�

for each p ∈ S.

In other words, to de�ne an automorphism, you pick any two coordinatizations
f and g . Then if you begin with any point in the space, take its g coordinate—
which is a number or ’tuple of numbers—and �nd the point in the space that
has that number (or tuple) as its f coordinate, the second point is what the
automorphism maps the �rst point to:

the space

the coordinates

p p ′

g f

φ

We can then say:

An n-place property P is intrinsic to 〈S,C 〉 iff for every automorphism φ
of 〈S,C 〉 and any points p1, . . . , pn ∈ S , P (p1, . . . , pn) iff P

�

φ(p1), . . . ,φ(pn)
�

For example, return to the one-dimensional metric space, and take the three-
place relation of being equally spaced. To say that this property is intrinsic to
the metric space is to say that for any automorphism φ, three points p, q , r are
equally spaced iff the points φ(p),φ(q),φ(r ) are equally spaced. And this will
indeed be true, given what we saw earlier: that the admissible coordinatizations

11What follows works only if all the coordinatizations are total; would be worth reworking
to make this assumption unnecessary.
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of that space differ only by re�ecting or shifting coordinates. For example:

p q r r ′ q ′ p ′

1 2 3

g f

φ

In coordinatization g , the points p, q , r are assigned as coordinates the numbers
1,2,3. Coordinatization f is a mirror re�ection (and perhaps shift) of g , in
which the coordinates of some other points p ′, q ′, r ′ are also 1,2,3. These other
points will be mirror imaged and shifted from p, q , r , but they too will be evenly
spaced.

On the other hand, consider the relation “left-of” on this same metric space,
by which I mean the relation of being being to the left of in the diagram, or,
better, the relation that holds between points x and y iff the x-to-y direction
is the same as the p-to-q direction. This relation is not intrinsic to the space,
since, e.g., q is left of r but φ(q) (i.e., q ′) is not left of φ(r ) (i.e., r ′).

Finally, let’s see how the coordinate approach will understand the claim that the
bogus “distance function” D f on the bag of points considered earlier (which was
derived via an arbitrary one-to-one function from the bag of points onto some
metric space) isn’t intrinsic to the bag of points. A mere bag of points, I said, has
“no structure at all”, beyond the mere facts of identity and difference between
the points. On the present approach to structure, this can be understood as the
following claim about the set of admissible coordinatizations of the bag. Choose
C to be any set of mathematical entities with the same cardinality as the bag, to
serve as the coordinates; then every one-to-one function from the bag onto C
is an admissible coordinatization. It follows that any one-to-one function from
the bag onto itself counts as an automorphism of the bag. Thus it follows, for
instance, that relations like “D f -congruence”, and “D f distance 1” (i.e., the four
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place relation holding between p, q , r, s such that D f (p, q) =D f (r, x), and the
two-place relation holding between p and q iff D f (p, q) = 1) are not intrinsic
to the bag, since it will be easy to �nd automorphisms that don’t preserve them.

4.3 Which is better?

The coordinate-based approach has a certain advantage over the metaphysically
in�ationary approach. Take a space with merely topological structure. The
in�ationary approach will need to identify the natural kinds that are responsible
for a given sort of structure. If a space has intrinsic topological structure, for
instance, this must be because some particular property or relation is a natural
kind. Perhaps it is the property of being a continuous path. But hang on. Another
property that would suf�ce would be the property of being an open set. And
for that matter, so would the property of not being a continuous path. We face a
question: which of these is the natural kind? Is it open set? Is it continuity?
Or perhaps both are natural kinds? Or perhaps neither are natural kinds (the
natural kind being something else—noncontinuity, say)?12

These are puzzling questions that simply don’t arise under the coordinate-
based approach. Identifying the class of admissible coordinate functions for
the topological space doesn’t require privileging any of the above properties
over the others as being a natural kind; all of them are preserved under any of
the associated automorphisms.13

This advantage, though, is the �ip side of a disadvantage. If we ask why this
particular class of functions is the admissible coordinatizations, the defender
of the second approach can give no answer. Whereas the defender of the
metaphysical approach can say something that is intuitively more satisfying:
these functions preserve topological structure because they preserve what the
open sets are; and the open sets are part of the nature of space.

(The dialectical situation here is directly parallel to the opposition I discuss
in The tools of metaphysics and the metaphysics of science, chapter 5, between a
metaphysical approach to theoretical equivalence and an approach I call “quo-
tienting”.)

12See Sider (2011b, section 10.2) and Sider (2020, chapter 5) on this issue.
13Another advantage of the coordinate-based approach is that it isn’t clear whether an

adequate natural-kinds approach to differential structure is possible. The best attempt in this
vicinity is Arntzenius and Dorr (2011).
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Actually I have a second concern about the coordinate approach. How, under
that approach, will we understand the question of whether “absolutism” about
distance is true—that is, whether absolute distances (such as being one meter
apart) are intrinsic to a space, or whether instead “comparativism” is true,
according to which only ratios of distances are intrinsic?

A natural thought is that this is a question of whether “expansions” of coor-
dinatizations are allowed. Return to our one-dimensional metric space. We
said earlier that if we start with a coordinatization, f , we can get new co-
ordinatizations by mirror-imaging and shifting the origin. But perhaps we
should also be allowed to “expand” coordinatizations, by multiplying every
coordinate by some �xed real number. If we do allow that, admissible coordina-
tizations needn’t assign the same numerical differences to pairs of points; they
need only assign the same ratios to any two pairs of points. It might be said
the absolutism/comparativism question is the question of whether expansions
of admissible coordinatizations are themselves admissible coordinatizations;
absolutists say no whereas comparativists say yes.

But even an absolutist thinks that the numerical scale is arbitrary. This arbi-
trariness will need to be expressed in some way other than saying that a range
of reprsentations, differing over what scales they represent, are all admissible.
But the arbitrariness in where the origin is seems akin to the arbitrariness in
what distance is represented by numerical distances of 1.

The metaphysical approach, in contrast, has an easy time with this issue. Accord-
ing to the comparativist, the natural kinds are relations like spatial congruence
(the distance between p and q is the same as the distance between r and s ),
whereas according to the absolutist (simple case) the natural kinds also include
relations like being �ve meters apart.

I think the coordinativist should say that there is an ambiguity in the use of
coordinates. On one hand they could be used to represent different scales,
so that (in the case of a metric space) the differences between coordinates
aren’t signi�cant. On the other hand, the differences might not be taken to
represent differences in scales. In the latter case, the differences are signi�cant, if
absolutism is true. We must use the latter understanding in order to characterize
the absolutism/comparativism debate.

The need for a stipulation here might be defended by observing (as Wallace
does) that all the use of real numbers to represent physical structure is con-
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ventional/stipulative. What’s the harm if we need to make further stipulations
about what we are using numbers to represent?
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