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1. Epistemology: Gödel

How do we know (a priori) about sets? Gödel suggested that we perceive them:

. . . despite their remoteness from sense experience, we do have something
like a perception also of the objects of set theory, as is seen from the
fact that the axioms force themselves on us as being true. I don’t see any
reason why we should have less confidence in this kind of perception, i.e.,
in mathematical intuition, than in sense perception, which induces us to
build up physical theories and to expect that future sense perceptions will
agree with them . . . (Gödel, 1983, 483–4)

But this is hard to believe, since perception is a causal process, and there are
no causal connections between sets and our brains.

2. Epistemology: Quine

2.1 Holism in Science

Quine: empiricism, but knowledge can be based “indirectly” on the senses:

Much of science involves universal generalizations (“all F s areGs”), which
we don’t learn from our senses directly.

Mill’s central epistemic principle was enumerative induction: we perceive
many F s, each of which is a G, and infer that (probably) all F s are Gs.

But enumerative induction can’t account for the parts of science that
concern unobservable entities, such as electromagnetic fields.

Rather: we hypothesize unobservable entities; we develop a theory of how
they behave; we then use our sense to check whether the theory’s predic-
tions are true.

Finally, the holism: checking predictions confirms (or disconfirms) entire
theories.
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The totality of our so-called knowledge or beliefs, from the most ca-
sual matters of geography and history to the profoundest laws of atomic
physics or even of pure mathematics and logic, is a man-made fabric
which impinges on experience only along the edges. Or, to change the
figure, total science is like a field of force whose boundary conditions
are experience. A conflict with experience at the periphery occasions
readjustments in the interior of the field. . . But the total field is so un-
determined by its boundary conditions, experience, that there is much
latitude of choice as to what statements to re-evaluate in the light of any
single contrary experience. No particular experiences are linked with any
particular statements in the interior of the field, except indirectly through
considerations of equilibrium affecting the field as a whole. (Quine, 1951,
pp. 39–40)

“Periphery”: beliefs directly connected to sensation. “Interior”: beliefs less
directly connected to sensation. When a theory has a good track record of
making correct predictions, the entire theory is confirmed, even the interior,
which may be about unobservable entities.

2.2 Holism applied to mathematical knowledge

Mathematical beliefs are in the interior. They take part in generating predic-
tions. (Newton’s laws are mathematical equations; only by using mathematics
can we derive their prediction that planets move in elliptical orbits.) So they
too can be indirectly confirmed by sensory information.

Challenge: what if some alternative body of beliefs contained no mathematics?

One such body contains only reports of observations. But this is “explanatorily
bad” (like a body of beliefs saying that we are dreaming everything). It isn’t
obvious that there are mathematics-free explanatorily good alternative bodies
of belief.

3. Applied mathematics

Challenge to Quine: how can mathematics be involved in making predictions
if sets don’t have physical properties?

Key to the answer: impure sets, i.e., sets containing nonmathematical objects as
members, such as {Allen Iverson} and

�

75,{Mars,π}
	

.
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Pure sets are built up solely from the null set. Part of the hierarchy of pure sets:

∅ (first stage)
∅ {∅} (second stage)

∅ {∅} {{∅}} {∅,{∅}} (third stage)
etc.

The impure hierarchy is similar, but at the first stage, in addition to the null set,
there are all the sets whose members are nonsets.

Important example of impure mathematical entities: “impure functions”, such
as:

m(x) = the mass of physical object x in kilograms
DP (x) = the number of dollars in the pockets of person x

Given the definition of a function, these functions are just sets of ordered pairs.

m =
�

〈Ted, 77〉, 〈Mars, 6.39× 1023〉, . . .
	

DP =
�

〈Ted, 5〉, 〈Macklemore, 20〉, . . .
	

And given the definition of an ordered pair, this can be rewritten:

m =
n

�

{Ted},{Ted, 77}
	

,
�

{Mars},{Mars, 6.39× 1023}
	

, . . .
o

DP =
n

�

{Ted},{Ted, 5}
	

,
�

{Macklemore},{Macklemore, 20}
	

, . . .
o

Thus impure functions are simply impure sets.

We can use impure functions to state general laws, such as the ideal gas law:

For any ideal gas, x: P (x) ·V (x) = n(x) ·R ·T (x)

where P , V , T , and n are the following impure functions from physical objects
to real numbers:

P (x) = the pressure of x in pascals
V (x) = the volume of x in cubic meters
T (x) = the temperature of x in degrees Kelvin
n(x) = the number of moles of x
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and R is a certain real number (approximately 8.314).

Now we can show how mathematics can be applied even though mathematical
objects don’t stand in cause-effect relationships to physical objects. Suppose
we learn by observation that for a certain ideal gas, g :

P (g ) = 100000
V (g ) = 17
n(g ) = 700

And suppose we also know that the ideal gas law is true. We can infer from the
ideal gas law, by logic, that:

P (g ) ·V (g ) = n(g ) ·R ·T (g )

We can then infer (using our purely mathematical knowledge) that:

T (g ) =
P (g )V (g )

n(g )R
=

100000 · 17
700 · 8.314

= 292

That is: the temperature of the gas g is 292◦ K (about 66◦ F).

How could we have learned by observation that, e.g., V (g ) = 17? Quine’s an-
swer would be: this is indirectly supported by observations involving measuring
instruments. The support is mediated by interior beliefs connecting impure
functions to observable matters, such as:

If one object, x, fits inside another object, y, then V (x)≤V (y).

If a solid object, x, is not water soluble, and is submerged in an initially full
container of water, and a quantity y of water spills out, then V (x) =V (y).

If some object z is made up of two nonoverlapping objects x and y, then
V (z) =V (x)+V (y).

4. Deductivism and applied mathematics, revisited

Deductivism says that a statement of pure mathematics, S, isn’t meaningful;
what is true is the statement that S can be proved from certain axioms. What will
the deductivist’s account of impure mathematical statements, such as ‘m(Ted) =
77’, be?
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How about ‘ “m(Ted) = 77” is provable from the axioms of pure mathematics’?
No: the axioms say nothing about the particular function m.

How about ‘ “m(Ted) = 77” is provable from the axioms of pure mathematics
plus M ’, where M are some new axioms about m? But then the new axioms
wouldn’t be arbitrarily chosen; they must be the right ones.

5. Continuum hypothesis

Continuum hypothesis

There is no set that is larger than the set of natural numbers but
smaller than the set of real numbers

In 1938, Gödel showed that it can’t be disproved from the ZF axioms. In 1963,
Paul Cohen showed that it can’t be proved either. But set-theoretic platonists
seem to face the question of whether it is true.

Gödel suggested that we might eventually get evidence for or against it:

There might exist axioms so abundant in their verifiable consequences,
shedding so much light upon a whole field, and yielding such powerful
methods for solving problems . . . that, no matter whether or not they are
intrinsically necessary, they would have to be accepted at least in the same
sense as any well-established physical theory. (Gödel, 1983, p. 477)

But that (arguably) hasn’t happened.

Some set-theoretic platonists simply live with the ignorance. Others defend
“set theoretic pluralism”, according to whichthere are many “set-theoretic
universes”, some of which obey the continuum hypothesis and some of which
don’t.
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