MEASUREMENT THEORY Ted Sider

Properties seminar

1. The problem of quantity
“Qualities” don’t come in degrees, “quantities” do.

Problem 1 What are the fundamental facts of quantity like, which enable
them to be spoken of and theorized about using numbers?

Simplest theory of quantity: quantities are relations to numbers. E.g., the
fundamental property of mass is, perhaps, the mass-in-kilograms relation,
which holds between concrete object x and real number 7 iff x’s mass is
r kg.

Objections: privileges a single unit of mass, involves real numbers in the facts of
mass. (Why is the latter bad? “real numbers are abstract and therefore causally
inert”; “real numbers don’t fundamentally exist”; “real numbers are constructed
entities, and constructed entities can’t be involved (qua the construction) in

fundamental facts”.)

Problem 2 What is the deficiency of statements of quantity that “don’t make
sense” because of missing quantitative structure?

1. The mass of object o is 5

5]

The mass of object o is 5g

The mass of object o is greater than the mass of object p
The mass of object o is twice that of the mass of object p
The mass of object o is greater than the charge of object p
Smith is witty to degree 6.808942 in the Johnson scale

The wit of Smith is greater than that of Jones
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"The wit of Smith is twice the wit of Jones



2. Using numbers to represent quantities

Basic idea of measurement theory: numbers can be used to represent a physical
system when the numbers share the same structure as the physical system.

Example: assigning numbers to massive objects:

4 5 167 7 5

(1) x is assigned the same number as y iff x and y have the same mass

4 4 5 7 167

(2) x is assigned a greater number than y iff x is more massive than y

4 4 § 12 20

(3) The sum of the numbers assigned to x and y equals the number assigned
to z iff x and y’s combined masses equal z’s mass

1 1 2 3 5

In sum: we can assign numbers to objects in a way that encodes information
about the objects’ nonnumeric properties. Different assignments can encode
different amounts of information.



3. Relational structures, homomorphisms and representa-
tion theorems

Relational structure: an n-tuple (A,R,...R,), where Aisasetand R,...R
are relations on that set.

n

Homomorphism (“structure-preserving function”): a function f is a ho-
momorphism from one relational structure (4,R,...R,) into another
(B,S,...S,)) iff f is a function from A into B such that for each R,

Ry(x,...x,) iff §,(f (x)).. f(,,))

* Think of the nonnumeric facts as a relational structure. E.g., the facts of
mass are (A, >, C), where A is the set of the five massive objects above,
> is the two-place being at-least-as-massive-as relation, and C is the
three-place combining-to-equal-in-mass relation.

* Think of the mathematical facts as another relational structure. E.g.
(R,>,R, ), where R is the set of real numbers, > is the greater-than-or-
equal-to relation on those numbers, and R, is the addition relation on
real numbers: R, xyz holds iff x +y = z.

* A mathematical structure will be useful tool to represent a nonmathe-
matical structure if there is a homomorphism from the nonmathematical
structure into the mathematical structure

* Homomorphic structures have analogous structure. We can use a homo-
morphism to extract information about the nonmathematical structure
from information about the mathematical structure. A particular homo-
morphism is just a scale.

Representation theorems tell us that homomorphisms exist from certain
nonmathematical structures into certain mathematical structures

4. Uniqueness theorems

Uniqueness theorems tell us how unique those homomorphisms are



Scale type Preserves Transformations

Ratio ratios similarity (f =kg)
Interval ~ ratios between intervals affine (f = kg +a)
Ordinal  order monotone

5. Assumptions made

M"xy =4 forsome y,...y, :

N=D»
C(9,9;:,9;41) for 1 <i <n, and
Vn =X

Archimedean assumption: For any x and y, if x > y then for some positive
integer 7 and some z, M”zy and z = x

A typical set of assumptions for mass:

* > is transitive and strongly connected (i.e. x > y or y = x holds for each
x and y)

e C is “commutative” and “associative” in that:
if C(x,y,a) then C(y,x,a)
if C(x,y,a) and C(a,z,b) and C(y,z,c) then C(x,c, b)

Adding the same mass preserves >, in that:
if x =y, and if C(x,z,x") and C(y,z,y’), then x" > '

it C(x,y,z) then z > x (mass is never negative)

Archimedean assumption

Existence of copies: for each x and integer 7, there exists some y such
that M”yx



6. Sketch of proofs

Xy =g YR x
M7xy iff g(x)=ng(y)
x =y iff g(x) > g(y) (for any homomorphism g)

Representation theorem for mass, proof sketch: First half constructs a certain func-
tion f; the second half shows that f is a homomorphism. I’'m only going to do
the first half.

First arbitrarily pick some object e € A (the unit). Set f(e) =

Now take any other a € A. Suppose a happens to be exactly 7 times as massive
as e, for some integer 7 (i.e. M"ae). Then we must let f(a) =nf(e)=

Similarly, suppose e just happens to be » times as massive as 2. Then we must

letf(a) ==

Suppose that some mass is a “multiple” of both 4 and e—for some x € A,
and some integers m and 7, M”xe and M”xa. Then we must set f(a) = 2

(Because nf(a) = f(x)=mf(e)=

Otherwise we must let /() be the least upper bound of certain fractions, namely
the fractions Z when m copies of e is smaller than 7 copies of . (Archimedean
assumption needed’)

Uniqueness theorem for mass, proof sketch: Show that any homomorphism g is a
scalar multiple of the homomorphism f that we constructed earlier—i.e., that
for some real number & (the scaling factor), for all a € A, g(a) =k f(a).

8(a)
(@)
to succeed; but f(e) = 1; so k£ must be g(e). So what we must show is that

g(a)=g(e)f(a), ic., % = f(a), for all 4.

Suppose for reductio that g ;é f(a). Then elther < f(a)or 2 > f(a).
I'll show that the first leads to a contradlctlon, and then stop.

How to choose the constant k? Well, £ needs to equal ) for all « if we’re



Choose integers m and 7 such that % <2 < f(a). Choose an x € A whose
mass is 7 times that of e, and an object y whose mass is 7 times that of a.
That is, M xe and M”ya. (Note the use of the existence of copies.) Given (¥),
g(x) = mg(e), and g(y) = ng(a). So &5 = 242 e

; and so, since £Z < 22 we
ng(x) g(e) n

know that gg—i; < 1landsoy < x. But given (*), f(x)=mf(e) and f(y) =nf(a),
v )

f@) [

But the left hand side of this is less than 1 (since 2 < f(4)) whereas the right
hand side is greater than 1 (since y < x).

and so:

7. Kinds of quantities

Any other quantity for which there are relations obeying the same assumptions
as >~ and C will obey the same representation and uniqueness theorems. For
quantities with different characteristic relations, or similar relations but obeying
different assumptions, different representation and uniqueness theorems will
provable.

8. Measurement theory: metaphysics and epistemology

The philosophers of science who developed measurement theory were largely
concerned with epistemic questions like: we can’t observe correlations between
physical objects and real numbers, so how can the use of real numbers be
justified in terms of things we can observe? As we saw, the metaphysical concerns
about quantity are different; but they too can be addressed using measurement

theory.

* Possible answer to problem 1: the fundamental relations for a quantity
are those relations in the nonmathematical structures (> and C in the
case of mass). Talk of numbers is useful (and justified) because of the
homomorphisms.

* Possible answer to problem 2: there are insufficient fundamental relations
to prove the uniqueness theorems, in cases of insufficient structure
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